Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 3, Pages 403–415
DOI: https://doi.org/10.4213/tmf8548
(Mi tmf8548)
 

Differential-geometric aspects of a nonholonomic Dirac mechanics: Lessons of a model quadratic in velocities

V. P. Pavlov

Steklov Mathematical Institute, RAS, Moscow, Russia
References:
Abstract: Faddeev and Vershik proposed the Hamiltonian and Lagrangian formulations of constrained mechanical systems that are invariant from the differential geometry standpoint. In both formulations, the description is based on a nondegenerate symplectic $2$-form defined on a cotangent bundle $T^*Q$ (in the Hamiltonian formulation) or on a tangent bundle $TQ$ (in the Lagrangian formulation), and constraints are sets of functions in involution on these manifolds. We demonstrate that this technique does not allow “invariantization” of the Dirac procedure of constraint “proliferation.” We show this in an example of a typical quantum field model in which the original Lagrange function is a quadratic form in velocities with a degenerate coefficient matrix. We postulate that the initial phase space is a manifold where all arguments of the action functional including the Lagrange multipliers are defined. The Lagrange multipliers can then be naturally interpreted physically as velocities (in the Hamiltonian formulation) or momenta (in the Lagrangian formulation) related to “nonphysical” degrees of freedom. A quasisymplectic $2$-form invariantly defined on such a manifold is degenerate. We propose new differential-geometric structures that allow formulating the Dirac procedure invariantly.
Keywords: nonholonomic Dirac mechanics, constraint proliferation, differential geometry.
Received: 13.05.2013
Revised: 06.10.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 3, Pages 347–358
DOI: https://doi.org/10.1007/s11232-014-0147-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. P. Pavlov, “Differential-geometric aspects of a nonholonomic Dirac mechanics: Lessons of a model quadratic in velocities”, TMF, 178:3 (2014), 403–415; Theoret. and Math. Phys., 178:3 (2014), 347–358
Citation in format AMSBIB
\Bibitem{Pav14}
\by V.~P.~Pavlov
\paper Differential-geometric aspects of a~nonholonomic Dirac mechanics: Lessons of a~model quadratic in velocities
\jour TMF
\yr 2014
\vol 178
\issue 3
\pages 403--415
\mathnet{http://mi.mathnet.ru/tmf8548}
\crossref{https://doi.org/10.4213/tmf8548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301509}
\zmath{https://zbmath.org/?q=an:1298.81129}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178..347P}
\elib{https://elibrary.ru/item.asp?id=21826662}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 3
\pages 347--358
\crossref{https://doi.org/10.1007/s11232-014-0147-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334254700006}
\elib{https://elibrary.ru/item.asp?id=21872687}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898765861}
Linking options:
  • https://www.mathnet.ru/eng/tmf8548
  • https://doi.org/10.4213/tmf8548
  • https://www.mathnet.ru/eng/tmf/v178/i3/p403
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:638
    Full-text PDF :206
    References:76
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025