Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 2, Pages 313–328
DOI: https://doi.org/10.4213/tmf8934
(Mi tmf8934)
 

This article is cited in 1 scientific paper (total in 1 paper)

The differential geometry of blow-ups

D. V. Bykov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (503 kB) Citations (1)
References:
Abstract: We discuss the local geometry in the vicinity of a sphere $\mathbb P^1$ embedded with a negative normal bundle. We show that the behavior of the Kähler potential near a sphere embedded with a given normal bundle can be determined using the adjunction formula. As a by-product, we construct (asymptotically locally complex-hyperbolic) Kähler–Einstein metrics on the total spaces of the line bundles $\mathcal O(-m)$, $m\ge3$, over $\mathbb P^1$.
Keywords: blow-up, adjunction formula, Kähler–Einstein metric.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: 29.12.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 2, Pages 1636–1648
DOI: https://doi.org/10.1007/s11232-015-0369-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Bykov, “The differential geometry of blow-ups”, TMF, 185:2 (2015), 313–328; Theoret. and Math. Phys., 185:2 (2015), 1636–1648
Citation in format AMSBIB
\Bibitem{Byk15}
\by D.~V.~Bykov
\paper The~differential geometry of blow-ups
\jour TMF
\yr 2015
\vol 185
\issue 2
\pages 313--328
\mathnet{http://mi.mathnet.ru/tmf8934}
\crossref{https://doi.org/10.4213/tmf8934}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438622}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1636B}
\elib{https://elibrary.ru/item.asp?id=24850732}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 2
\pages 1636--1648
\crossref{https://doi.org/10.1007/s11232-015-0369-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366113400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949309729}
Linking options:
  • https://www.mathnet.ru/eng/tmf8934
  • https://doi.org/10.4213/tmf8934
  • https://www.mathnet.ru/eng/tmf/v185/i2/p313
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :166
    References:59
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024