Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 1, Pages 162–176
DOI: https://doi.org/10.4213/tmf9301
(Mi tmf9301)
 

This article is cited in 8 scientific papers (total in 8 papers)

Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements

A. B. Bogatyrevabc

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Institute for Numerical Mathematics, RAS, Moscow, Russia
Full-text PDF (495 kB) Citations (8)
References:
Abstract: We use the language of real meromorphic differentials from the theory of Klein surfaces to describe the metastable states of multiply connected planar ferromagnetic nanoelements that minimize the exchange energy and have no side magnetic charges. These solutions still have sufficient internal degrees of freedom, which can be used as Ritz parameters to minimize other contributions to the total energy or as slow dynamical variables in the adiabatic approximation. The nontrivial topology of the magnet itself leads to several effects first described for the annulus and observed in the experiment. We explain the connection between the numbers of topological singularities of various types in the magnet and the constraints on the positions of these singularities following from the Abel theorem. Using multivalued Prym differentials leads to new meron configurations that were not considered in the classic work by Gross.
Keywords: spintronic, planar nanoelement, magnetic vortex, meron, Klein surface, Prym differential.
Funding agency Grant number
Russian Science Foundation 16-11-10349
This research was supported by a grant from the Russian Science Foundation (Project No. 16-11-10349).
Received: 10.11.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 1, Pages 1547–1559
DOI: https://doi.org/10.1134/S0040577917100117
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. B. Bogatyrev, “Real meromorphic differentials: A language for describing meron configurations in planar magnetic nanoelements”, TMF, 193:1 (2017), 162–176; Theoret. and Math. Phys., 193:1 (2017), 1547–1559
Citation in format AMSBIB
\Bibitem{Bog17}
\by A.~B.~Bogatyrev
\paper Real meromorphic differentials: A~language for describing meron configurations in planar magnetic nanoelements
\jour TMF
\yr 2017
\vol 193
\issue 1
\pages 162--176
\mathnet{http://mi.mathnet.ru/tmf9301}
\crossref{https://doi.org/10.4213/tmf9301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716532}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1547B}
\elib{https://elibrary.ru/item.asp?id=30512360}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 1
\pages 1547--1559
\crossref{https://doi.org/10.1134/S0040577917100117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000415198200011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85034442808}
Linking options:
  • https://www.mathnet.ru/eng/tmf9301
  • https://doi.org/10.4213/tmf9301
  • https://www.mathnet.ru/eng/tmf/v193/i1/p162
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :127
    References:55
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024