Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2008, Volume 53, Issue 1, Pages 40–58
DOI: https://doi.org/10.4213/tvp318
(Mi tvp318)
 

This article is cited in 4 scientific papers (total in 4 papers)

What is the Least Expected Number of Real Roots of a Random Polynomial?

D. N. Zaporozhets, A. I. Nazarov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: Let $G_n$ be a random polynomial with coefficients. Denote by $\mathcal{N}(G_n)$ the number of real roots of $G_n$. We find the minimum of $\sup_{n\in{N}}E\mathcal{N}(G_n)$ over different classes of coefficient distributions.
Keywords: random polynomial, expected number of real roots.
Received: 29.12.2007
English version:
Theory of Probability and its Applications, 2009, Volume 53, Issue 1, Pages 117–133
DOI: https://doi.org/10.1137/S0040585X97983389
Bibliographic databases:
Language: Russian
Citation: D. N. Zaporozhets, A. I. Nazarov, “What is the Least Expected Number of Real Roots of a Random Polynomial?”, Teor. Veroyatnost. i Primenen., 53:1 (2008), 40–58; Theory Probab. Appl., 53:1 (2009), 117–133
Citation in format AMSBIB
\Bibitem{ZapNaz08}
\by D.~N.~Zaporozhets, A.~I.~Nazarov
\paper What is the Least Expected Number of Real Roots of a Random Polynomial?
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 1
\pages 40--58
\mathnet{http://mi.mathnet.ru/tvp318}
\crossref{https://doi.org/10.4213/tvp318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760564}
\zmath{https://zbmath.org/?q=an:05701594}
\elib{https://elibrary.ru/item.asp?id=11920236}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 1
\pages 117--133
\crossref{https://doi.org/10.1137/S0040585X97983389}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264940300007}
\elib{https://elibrary.ru/item.asp?id=13612940}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62249145478}
Linking options:
  • https://www.mathnet.ru/eng/tvp318
  • https://doi.org/10.4213/tvp318
  • https://www.mathnet.ru/eng/tvp/v53/i1/p40
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:699
    Full-text PDF :193
    References:109
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024