Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2012, Volume 57, Issue 4, Pages 625–648
DOI: https://doi.org/10.4213/tvp4471
(Mi tvp4471)
 

This article is cited in 11 scientific papers (total in 11 papers)

About time of reaching a high level by a random walk in a random environment

V. I. Afanasyev

Steklov Mathematical Institute of the Russian Academy of Sciences
References:
Abstract: Let $(p_{i},q_{i}) $, $i\in \mathbb{Z}$, be a sequence of independent identically distributed pairs of random variables, where $p_{0}+q_{0}=1$ and, in addition, $p_{0}>0$ and $q_{0}>0 $ a.s. We consider a random walk in the random environment $(p_{i},q_{i}) $, $i\in \mathbb{Z}$. This means that in a fixed random environment a walking particle located at some moment $n$ at a state $i$ jumps at moment $n+1$ either to the state $(i+1)$ with probability $p_{i}$ or to the state $(i-1)$ with probability $q_{i}$. It is assumed that the distribution of the random variable $\log (q_{0}/p_{0})$ belongs (without centering) to the domain of attraction of the two-sided stable law with index $\alpha \in (0,2] $. Let $T_{n}$ be the first passage time of level $n$ by the mentioned random walk. We prove the invariance principle for the logarithm of the stochastic process $\{T_{\lfloor ns\rfloor},s\in [0,1] \}$ as $n\to \infty$. This result is based on the limit theorem for a branching process in a random environment which allows precisely one immigrant in each generation.
Keywords: random walk in random environment, branching process in random environment with immigration, functional limit theorems, stable Lévy processes.
Received: 01.06.2010
Revised: 30.08.2012
English version:
Theory of Probability and its Applications, 2013, Volume 57, Issue 4, Pages 547–567
DOI: https://doi.org/10.1137/S0040585X97986175
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Teor. Veroyatnost. i Primenen., 57:4 (2012), 625–648; Theory Probab. Appl., 57:4 (2013), 547–567
Citation in format AMSBIB
\Bibitem{Afa12}
\by V.~I.~Afanasyev
\paper About time of reaching a high level by a random walk in a random environment
\jour Teor. Veroyatnost. i Primenen.
\yr 2012
\vol 57
\issue 4
\pages 625--648
\mathnet{http://mi.mathnet.ru/tvp4471}
\crossref{https://doi.org/10.4213/tvp4471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201664}
\zmath{https://zbmath.org/?q=an:1284.60087}
\elib{https://elibrary.ru/item.asp?id=20732979}
\transl
\jour Theory Probab. Appl.
\yr 2013
\vol 57
\issue 4
\pages 547--567
\crossref{https://doi.org/10.1137/S0040585X97986175}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326878100001}
\elib{https://elibrary.ru/item.asp?id=21887783}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887188912}
Linking options:
  • https://www.mathnet.ru/eng/tvp4471
  • https://doi.org/10.4213/tvp4471
  • https://www.mathnet.ru/eng/tvp/v57/i4/p625
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :168
    References:70
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024