Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2022, Volume 67, Issue 1, Pages 134–149
DOI: https://doi.org/10.4213/tvp5422
(Mi tvp5422)
 

This article is cited in 1 scientific paper (total in 1 paper)

Background driving distribution functions and series representations for log-gamma self-decomposable random variables

Z. J. Jurek

Institute of Mathematics, University of Wroclaw, Wroclaw, Poland
Full-text PDF (456 kB) Citations (1)
References:
Abstract: We identify the background driving distribution functions (BDDF) for self-decomposable distributions (random variables). For log-gamma variables and their background driving variables, we find their series representations. An innovation variable for Bessel-K distribution is given as a compound Poisson variable.
Keywords: self-decomposable distribution, random integral, characteristic function, Lévy process, random series representation, compound Poisson measure, log-gamma distribution.
Received: 04.07.2020
Revised: 08.06.2021
Accepted: 29.09.2021
English version:
Theory of Probability and its Applications, 2022, Volume 67, Issue 1, Pages 105–117
DOI: https://doi.org/10.1137/S0040585X97T990782
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Z. J. Jurek, “Background driving distribution functions and series representations for log-gamma self-decomposable random variables”, Teor. Veroyatnost. i Primenen., 67:1 (2022), 134–149; Theory Probab. Appl., 67:1 (2022), 105–117
Citation in format AMSBIB
\Bibitem{Jur22}
\by Z.~J.~Jurek
\paper Background driving distribution functions and series representations for log-gamma self-decomposable random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 1
\pages 134--149
\mathnet{http://mi.mathnet.ru/tvp5422}
\crossref{https://doi.org/10.4213/tvp5422}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466416}
\zmath{https://zbmath.org/?q=an:7523562}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 1
\pages 105--117
\crossref{https://doi.org/10.1137/S0040585X97T990782}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85131067570}
Linking options:
  • https://www.mathnet.ru/eng/tvp5422
  • https://doi.org/10.4213/tvp5422
  • https://www.mathnet.ru/eng/tvp/v67/i1/p134
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :59
    References:84
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025