|
Уфимский математический журнал, 2024, том 16, выпуск 4, страницы 125–136
(Mi ufa712)
|
|
|
|
Construction of exact solutions of nonlinear PDE via dressing chain in 3D
I. T. Habibullin, A. R. Khakimova Institute of Mathematics, Ufa Federal Research Center, RAS,
Chernyshevsky str. 112, 450008, Ufa, Russia
Аннотация:
The duality between a class of the Davey — Stewartson type coupled systems and a class of two–dimensional Toda type lattices is discussed. A new coupled system related to the recently found lattice is presented. A method for eliminating nonlocalities in coupled systems by virtue of special finite reductions of the lattices is suggested. An original algorithm for constructing explicit solutions of the coupled systems based on the finite reduction of the corresponding lattice is proposed. Some new solutions for coupled systems related to the Volterra lattice are presented as illustrative examples.
Ключевые слова:
3D lattices, generalized symmetries, Darboux integrable reductions, Lax pairs, Davey — Stewartson type coupled system.
Поступила в редакцию: 30.09.2024
Образец цитирования:
I. T. Habibullin, A. R. Khakimova, “Construction of exact solutions of nonlinear PDE via dressing chain in 3D”, Уфимск. матем. журн., 16:4 (2024), 125–136; Ufa Math. J., 16:4 (2024), 124–135
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa712 https://www.mathnet.ru/rus/ufa/v16/i4/p125
|
Статистика просмотров: |
Страница аннотации: | 47 | PDF русской версии: | 17 | PDF английской версии: | 9 | Список литературы: | 13 |
|