|
МАТЕМАТИКА
Об одной нелокальной краевой задаче периодического типа для трехмерного уравнения смешанного типа второго рода в неограниченном параллелепипеде
С. З. Джамалов, Б. К. Сипатдинова Институт математики имени В. И. Романовского АН РУз
Аннотация:
Как известно, в работе А.В. Бицадзе показано, что задача Дирихле для уравнения смешанного типа некорректна. Естественно возникает вопрос: нельзя ли заменить условия задачи Дирихле другими условиями, охватывающими всю границу, которые обеспечивают корректность задачи? Впервые такие краевые задачи (нелокальные краевые задачи) для уравнения смешанного типа были предложены и изучены в работах Ф.И. Франкля при решении газодинамической задачи об обтекании профилей потоком дозвуковой скорости со сверхзвуковой зоной, оканчивающейся прямым скачком уплотнения. Близкие по постановке задачи для уравнения смешанного типа второго рода второго порядка, имеются в работах А.Н. Терехова, С.Н. Глазатова, М.Г. Каратопраклиевой и С.З. Джамалова. В этих работах для уравнения смешанного типа второго рода второго порядка изучены нелокальные краевые задачи в ограниченных областях. Такие задачи для уравнения смешанного типа первого рода в трехмерном случае (в частости, для уравнения Трикоми) в неограниченных областях изучены в работах С.З. Джамалова и Х. Туракулова. Для уравнений смешанного типа второго рода в неограниченных областях нелокальные краевые задачи в многомерном случае практически не исследованы. С этой целью в данной работе в неограниченном параллелепипеде формулируется и изучается нелокальная краевая задача периодического типа для трехмерного уравнения смешанного типа второго рода второго порядка. Для доказательства единственности обобщённого решения используется метод интегралов энергии. Для доказательства существования обобщённого решения сначала используется преобразование Фурье и в результате получается новая задача на плоскости, а для разрешимости этой задачи используется методы «$\epsilon$-регуляризации»и априорных оценок. Используя эти методы, и равенство Парсеваля, докажем единственность, существование и гладкость обобщённого решения одной нелокальной краевой задачи периодического типа для трехмерного уравнения смешанного типа второго рода второго порядка.
Ключевые слова:
уравнение смешанного типа второго рода, нелокальная краевая задача, преобразование Фурье, методы «$\epsilon$ -регуляризации» и априорных оценок.
Образец цитирования:
С. З. Джамалов, Б. К. Сипатдинова, “Об одной нелокальной краевой задаче периодического типа для трехмерного уравнения смешанного типа второго рода в неограниченном параллелепипеде”, Вестник КРАУНЦ. Физ.-мат. науки, 42:1 (2023), 58–68
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vkam584 https://www.mathnet.ru/rus/vkam/v42/i1/p58
|
Статистика просмотров: |
Страница аннотации: | 69 | PDF полного текста: | 33 | Список литературы: | 23 |
|