Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 2, Pages 80–85
DOI: https://doi.org/10.23671/VNC.2018.2.14724
(Mi vmj656)
 

On infinite Frobenius groups

D. V. Lytkinaab, V. D. Mazurovc, A. Kh. Zhurtovd

a Siberian State University of Telecommunications and Information Sciences
b Novosibirsk State University
c Sobolev Institute of Mathematics
d Kabardino-Balkar State University
References:
Abstract: We study the structure of a periodic group $G$ satisfying the following conditions: $(F_1)$ The group $G$ is a semidirect product of a subgroup $F$ by a subgroup $H$; $(F_2)$ $H$ acts freely on $F$ with respect to conjugation in $G$, i. e. for $f\in F$, $h\in H$ the equality $f^h=f$ holds only for the cases $f=1$ or $h=1$. In other words $H$ acts on $F$ as the group of regular automorphisms. $(F_3)$ The order of every element $g\in G$ of the form $g=fh$ with $f\in F$ and $1\neq h\in H$ is equal to the order of $h$; in other words, every non-trivial element of $H$ induces with respect to conjugation in $G$ a splitting automorphism of the subgroup $F$. $(F_4)$ The subgroup $H$ is generated by elements of order $3$. In particular, we show that the rank of every principal factor of the group $G$ within $F$ is at most four. If $G$ is a finite Frobenius group, then the conditions $(F_1)$ and $(F_2)$ imply $(F_3)$. For infinite groups with $(F_1)$ and $(F_2)$ the condition $(F_3)$ may be false, and we say that a group is Frobenius if all three conditions $(F_1)$$(F_3)$ are satisfied. The main result of the paper gives a description of а periodic Frobenius groups with the property $(F_4)$.
Key words: periodic group, Frobenius group, free action, splitting automorphism.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.1., проект № 0314-2016-001
Received: 19.01.2018
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: D. V. Lytkina, V. D. Mazurov, A. Kh. Zhurtov, “On infinite Frobenius groups”, Vladikavkaz. Mat. Zh., 20:2 (2018), 80–85
Citation in format AMSBIB
\Bibitem{LytMazZhu18}
\by D.~V.~Lytkina, V.~D.~Mazurov, A.~Kh.~Zhurtov
\paper On infinite Frobenius groups
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 2
\pages 80--85
\mathnet{http://mi.mathnet.ru/vmj656}
\crossref{https://doi.org/10.23671/VNC.2018.2.14724}
\elib{https://elibrary.ru/item.asp?id=35258720}
Linking options:
  • https://www.mathnet.ru/eng/vmj656
  • https://www.mathnet.ru/eng/vmj/v20/i2/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :58
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024