Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2019, Volume 21, Number 2, Pages 58–66
DOI: https://doi.org/10.23671/VNC.2019.2.32117
(Mi vmj693)
 

The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system

Zh. D. Totievaab

a North Ossetian State University, 44-46 Vatutin St., Vladikavkaz 362025, Russia
b Southern Mathematical Institute VSC RAS, 22 Marcus St., Vladikavkaz 362027, Russia
References:
Abstract: We consider the problem of determining the matrix kernel $K(t)=\mathrm{diag}(K_1, K_2, K_3)(t)$, $ t>0,$ occurring in the system of integro-differential viscoelasticity equations for anisotropic medium. The direct initial boundary value problem is to determine the displacement vector function $u(x,t)=(u_1,u_2,u_3)(x,t),$ $x=(x_1,x_2,x_3) \in R^3,$ $x_3>0$. It is assumed that the coefficients of the system (density and elastic modulus) depend only on the spatial variable $x_3>0$. The source of perturbation of elastic waves is concentrated on the boundary of $x_3=0$ and represents the Dirac Delta function (Neumann boundary condition of a special kind). The inverse problem is reduced to the previously studied problems of determining scalar kernels $K_i(t)$, $ i=1,2,3$. As an additional condition, the value of the Fourier transform in $x_2$ of the function $u(x,t)$ is given on the surface $x_3=0$. Theorems of global unique solvability and stability of the solution of the inverse problem are given. The idea of proving global solvability is to apply the contraction mapping principle to a system of nonlinear Volterra integral equations of the second kind in a weighted Banach space.
Key words: inverse problem, stability, delta function, elastic moduli, coefficients, matrix kernel.
Received: 14.06.2018
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35L20, 35R30, 35Q99
Language: Russian
Citation: Zh. D. Totieva, “The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system”, Vladikavkaz. Mat. Zh., 21:2 (2019), 58–66
Citation in format AMSBIB
\Bibitem{Tot19}
\by Zh.~D.~Totieva
\paper The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system
\jour Vladikavkaz. Mat. Zh.
\yr 2019
\vol 21
\issue 2
\pages 58--66
\mathnet{http://mi.mathnet.ru/vmj693}
\crossref{https://doi.org/10.23671/VNC.2019.2.32117}
\elib{https://elibrary.ru/item.asp?id=39112804}
Linking options:
  • https://www.mathnet.ru/eng/vmj693
  • https://www.mathnet.ru/eng/vmj/v21/i2/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :38
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024