Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2021, Volume 23, Number 2, Pages 78–86
DOI: https://doi.org/10.46698/n2399-6862-7231-a
(Mi vmj766)
 

Properties of Sergeev oscilation characteristics of periodic second-order equation

A. Kh. Stash

Caucasus Mathematical Center, Adyghe State University, 208 Pervomayskaya St., Maikop 385000, Russia
References:
Abstract: In this paper, we study the properties of the Sergeev oscillation characteristics of solutions of linear homogeneous second-order differential equations with continuous periodic coefficients. It is known that the upper (weak and strong) oscillation of zeros, roots, hyperroots, strict and non-strict sign changes coincide with the upper Sergeyev frequencies of zeros, roots, and strict sign changes. A similar property holds for all of the listed lower characteristics of Sergeev's oscillation. However, the upper characteristics of solutions of linear homogeneous second-order differential equations with bounded coefficients do not always coincide with the lower ones. In the present paper, equality is established between all characteristics of Sergeev's oscillation on the set of solutions of the Hill equation. Moreover, we have found an effective formula that allows us to find them and conduct studies on the stability of the Hill equation. Besides, a formula connecting Hill equation multipliers with non-integer Sergeyev's frequencies is obtained. Necessary and sufficient conditions of the stability of frequency of the Hill's equation are derived. In proving the results, the transition from Cartesian coordinates to polar coordinates was carried out, so that for the polar angle we obtain an equation that can be interpreted as an equation on the torus. As an auxiliary result, equality was established between the rotation number and the frequency of the Hill equation.
Key words: Hill's equation, differential equation on a torus, oscillation, number of zeros, exponents of oscillation, rotation number, Sergeev frequency, multiplier.
Received: 28.07.2020
Document Type: Article
UDC: 517.955.8
MSC: 34C10, 34D05, 34D08
Language: Russian
Citation: A. Kh. Stash, “Properties of Sergeev oscilation characteristics of periodic second-order equation”, Vladikavkaz. Mat. Zh., 23:2 (2021), 78–86
Citation in format AMSBIB
\Bibitem{Sta21}
\by A.~Kh.~Stash
\paper Properties of Sergeev oscilation characteristics of periodic second-order equation
\jour Vladikavkaz. Mat. Zh.
\yr 2021
\vol 23
\issue 2
\pages 78--86
\mathnet{http://mi.mathnet.ru/vmj766}
\crossref{https://doi.org/10.46698/n2399-6862-7231-a}
Linking options:
  • https://www.mathnet.ru/eng/vmj766
  • https://www.mathnet.ru/eng/vmj/v23/i2/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :33
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024