|
This article is cited in 5 scientific papers (total in 5 papers)
The index set of linear orderings that are autostable relative to strong constructivizations
S. S. Goncharovab, N. A. Bazhenovba, M. I. Marchukb a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract:
We prove that a computable ordinal $\alpha$ is autostable relative to strong constructivizations if and only if $\alpha<\omega^{\omega+1}$. We calculate, in a precise way, the complexity of the index set for linear orderings that are autostable relative to strong constructivizations.
Keywords:
computable model, strongly constructivizable model, autostability, autostability relative to strong constructivizations, linear ordering, computable ordinal, index set.
Received: 06.04.2015
Citation:
S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “The index set of linear orderings that are autostable relative to strong constructivizations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:3 (2015), 51–60; J. Math. Sci., 221:6 (2017), 840–848
Linking options:
https://www.mathnet.ru/eng/vngu375 https://www.mathnet.ru/eng/vngu/v15/i3/p51
|
Statistics & downloads: |
Abstract page: | 291 | Full-text PDF : | 47 | References: | 50 | First page: | 9 |
|