Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 2014, выпуск 1(34), страницы 56–65
DOI: https://doi.org/10.14498/vsgtu1299
(Mi vsgtu1299)
 

Эта публикация цитируется в 29 научных статьях (всего в 29 статьях)

Дифференциальные уравнения

Обратная задача для одного интегро-дифференциального уравнения Фредгольма в частных производных третьего порядка

Т. К. Юлдашев

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, г. Красноярск, 660014, Россия (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы:
Аннотация: Интегро-дифференциальные уравнения имеют особенности в вопросе однозначной разрешимости. Вопросы разрешимости линейных обратных задач для дифференциальных уравнений в частных производных изучены многими авторами. В работе рассматривается нелинейная обратная задача, где функция восстановления в заданное интегрально-дифференциальное уравнение входит нелинейно и с запаздыванием. Относительно восстанавливаемой функции данное уравнение является неявным функционально-интегральным уравнением Фредгольма. Изучается однозначная разрешимость нелинейной обратной задачи для интегро-дифференциального уравнения Фредгольма в частных производных третьего порядка. Сначала модифицируется метод вырожденного ядра интегрального уравнения Фредгольма для случая интегро-дифференциальных уравнений Фредгольма в частных производных третьего порядка. При решении нелинейной обратной задачи относительно восстанавливаемой функции получится нелинейное интегральное уравнение Вольтерра первого рода, которое с помощью специального неклассического интегрального преобразования сводится к нелинейному интегральному уравнению Вольтерра второго рода. Поскольку восстанавливаемая функция нелинейно входит в заданное интегро-дифференциальное уравнение и имеет запаздывание, задание начального условия по отношению к восстанавливаемой функции обеспечивает единственность решения нелинейного интегрального уравнения первого рода и определяет значение неизвестной восстанавливаемой функции на начальном отрезке. Далее используется метод последовательных приближений в сочетании с методом сжимающих отображений.
Ключевые слова: нелинейная обратная задача, уравнение в частных производных третьего порядка, интегро-дифференциальное уравнение, интегральное преобразование, метод последовательных приближений.
Поступила в редакцию 28/XII/2013
в окончательном варианте – 24/II/2014
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.968.7
MSC: Primary 35R30; Secondary 35K70, 35M12
Образец цитирования: Т. К. Юлдашев, “Обратная задача для одного интегро-дифференциального уравнения Фредгольма в частных производных третьего порядка”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(34) (2014), 56–65
Цитирование в формате AMSBIB
\RBibitem{Yul14}
\by Т.~К.~Юлдашев
\paper Обратная задача для одного интегро-дифференциального уравнения Фредгольма в~частных производных третьего порядка
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2014
\vol 1(34)
\pages 56--65
\mathnet{http://mi.mathnet.ru/vsgtu1299}
\crossref{https://doi.org/10.14498/vsgtu1299}
\zmath{https://zbmath.org/?q=an:06968825}
\elib{https://elibrary.ru/item.asp?id=22813960}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vsgtu1299
  • https://www.mathnet.ru/rus/vsgtu/v134/p56
  • Эта публикация цитируется в следующих 29 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Статистика просмотров:
    Страница аннотации:1715
    PDF полного текста:658
    Список литературы:108
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024