Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2020, Volume 24, Number 4, Pages 752–761
DOI: https://doi.org/10.14498/vsgtu1799
(Mi vsgtu1799)
 

This article is cited in 21 scientific papers (total in 21 papers)

Short Communication
Mechanics of Solids

On the Neuber theory of micropolar elasticity. A pseudotensor formulation

V. A. Kovaleva, E. V. Murashkinb, Yu. N. Radayevb

a Moscow Metropolitan Governance Yury Luzhkov University, Moscow, 107045, Russian Federation
b Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The present paper deals with a pseudotensor formulation of the Neuber theory of micropolar elasticity. The dynamic equations of the micropolar continuum in terms of relative tensors (pseudotensors) are presented and discussed. The constitutive equations for a linear isotropic micropolar solid is given in the pseudotensor form. The final forms of the dynamic equations for the isotropic micropolar continuum in terms of displacements and microrotations are obtained in terms of relative tensors. The refinements of Neuber's dynamic equations are discussed. Those are also considered in the cylindrical coordinate net.
Keywords: micropolarity, elasticity, continuum, microrotation, pseudoscalar, relative tensor, weight, constitutive equation.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations АААА-А20-120011690132-4
Russian Foundation for Basic Research 18-51-00844
20-01-00666
This study was in part financially supported by the Ministry of Science and Higher Education of the Russian Federation (State Registration Number AAAA–A20–120011690132–4) and by the Russian Foundation for Basic Research (projects nos. 18–01–00844, 20–01–00666).
Received: July 16, 2020
Revised: October 17, 2020
Accepted: November 16, 2020
First online: November 22, 2020
Bibliographic databases:
Document Type: Article
UDC: 539.3
MSC: 74A20, 74A35, 74A60
Language: English
Citation: V. A. Kovalev, E. V. Murashkin, Yu. N. Radayev, “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761
Citation in format AMSBIB
\Bibitem{KovMurRad20}
\by V.~A.~Kovalev, E.~V.~Murashkin, Yu.~N.~Radayev
\paper On the Neuber theory of micropolar elasticity. A~pseudotensor formulation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2020
\vol 24
\issue 4
\pages 752--761
\mathnet{http://mi.mathnet.ru/vsgtu1799}
\crossref{https://doi.org/10.14498/vsgtu1799}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608541100008}
\elib{https://elibrary.ru/item.asp?id=44963399}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1799
  • https://www.mathnet.ru/eng/vsgtu/v224/i4/p752
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :216
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024