Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2018, Volume 24, Issue 1, Pages 7–13
DOI: https://doi.org/10.18287/2541-7525-2018-24-1-7-13
(Mi vsgu563)
 

Mathematics

The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation

S. A. Aldashev

Department of Mathematics and Mathematical Modeling, Institute of Mathematics and Mathematical Modeling, 125, Pushkin street, Almaty, 050010, Republic of Kazakhstan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Multidimensional hyperbolic-elliptic equations describe important physical, astronomical and geometric processes. It is known that vibrations of elastic membranes in space according to the Hamiltonian principle can be modeled by a multidimensional wave equation. Assuming that the membrane is in equilibrium in the bending position, the Hamiltonian principle also yields the multidimensional Laplace equation. Consequently, the vibrations of elastic membranes in space can be modeled as the multidimensional Lavrentiev–Bitsadze equation. When studying these applications, it becomes necessary to obtain an explicit representation of the boundary value problems being studied. The author has previously studied the Dirichlet problem for multidimensional hyperbolic-elliptic equations, where a unique solvability of this problem is shown, which essentially depends on the height of the entire cylindrical region under consideration. In this paper we investigate a Dirichlet type problem in the cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation and obtain an explicit form of its classical solution. In this case, the unique solvability depends only on the height of the hyperbolic part of the cylindrical domain, and a criterion for the uniqueness of the solution is given.
Keywords: well-posedness, Dirichlet type problem, cylindrical domain, multidimensional equation, criterion.
Received: 16.01.2018
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: S. A. Aldashev, “The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:1 (2018), 7–13
Citation in format AMSBIB
\Bibitem{Ald18}
\by S.~A.~Aldashev
\paper The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev--Bitsadze equation
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2018
\vol 24
\issue 1
\pages 7--13
\mathnet{http://mi.mathnet.ru/vsgu563}
\crossref{https://doi.org/10.18287/2541-7525-2018-24-1-7-13}
\elib{https://elibrary.ru/item.asp?id=35121919}
Linking options:
  • https://www.mathnet.ru/eng/vsgu563
  • https://www.mathnet.ru/eng/vsgu/v24/i1/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :82
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025