Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2024, Volume 30, Issue 4, Pages 7–17
DOI: https://doi.org/10.18287/2541-7525-2024-30-5-7-17
(Mi vsgu749)
 

Mathematics

Boundary value problems for discontinuously loaded parabolic equations

M. M. Karmokova, F. M. Nakhushevaa, S.Kh. Gekkievab

a Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russian Federation
b Institute of Applied Mathematics and Automation of KBSC RAS, Nalchik, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The article deals with boundary value problems for a discontinuously loaded parabolic equation with a Riemann – Liouville fractional integro-differentiation operator with variable coefficients. The unambiguous solvability of the Cauchy – Dirichlet problem for a discontinuously loaded parabolic equation of fractional order is proved. The paper also examines the existence and uniqueness of the solution of the first boundary value problem for a discontinuously loaded parabolic equation. Using the method of the Green function, using the properties of the fundamental solution of the corresponding homogeneous equation, as well as assuming that the coefficients of the equation are bounded, continuous and satisfy the Helder condition, while remaining non-negative, it is shown that the solution of the problem is reduced to a system of Volterra integral equations of the second kind.
Keywords: boundary value problems, parabolic equations, Cauchy – Dirichlet problem, fractional integro differentiation operator, first boundary value problem, Green's function, loaded equation, regular solution.
Received: 11.09.2024
Accepted: 25.11.2024
Document Type: Article
UDC: 517.95
Language: Russian
Citation: M. M. Karmokov, F. M. Nakhusheva, S.Kh. Gekkieva, “Boundary value problems for discontinuously loaded parabolic equations”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 30:4 (2024), 7–17
Citation in format AMSBIB
\Bibitem{KarNakGek24}
\by M.~M.~Karmokov, F.~M.~Nakhusheva, S.Kh.~Gekkieva
\paper Boundary value problems for discontinuously loaded parabolic equations
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2024
\vol 30
\issue 4
\pages 7--17
\mathnet{http://mi.mathnet.ru/vsgu749}
\crossref{https://doi.org/10.18287/2541-7525-2024-30-5-7-17}
Linking options:
  • https://www.mathnet.ru/eng/vsgu749
  • https://www.mathnet.ru/eng/vsgu/v30/i4/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025