Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2024, Volume 29, Issue 145, Pages 77–85
DOI: https://doi.org/10.20310/2686-9667-2024-29-145-77-85
(Mi vtamu315)
 

Scientific articles

On some classes of systems of differential equations

L. I. Rodinaab

a Vladimir State University
b National University of Science and Technology “MISiS”
References:
Abstract: We consider an autonomous system of differential equations
$$ \dot x =f(x), \quad \text {where} \quad x\in\mathbb R^n, $$
the vector function $f(x)$ and its derivatives $\partial f_i/\partial x_j$ ($i,j=1,\ldots,n$) are continuous. Three classes of autonomous systems are identified and the properties that systems of each class possess are described.
We will assume that the system belongs to the first class on the set $D\subseteq\mathbb R^n,$ if the right parts of this system do not depend on varibles $x_1,\ldots,x_n,$ that is this system has the form $\dot x = C,$ where $C\in\mathbb R^n,$ $x\in D.$ We will assign to the second class the systems that are not included in the first class, for which the next condition is met "each of the function $f_i$ is increasing on the set $D\subseteq\mathbb R^n$ with respect to all variables on which it explicitly depends, with the exception of variable $x_i,$ $i=1,\ldots,n$". Solutions of systems of the first and second classes have the property of monotonicity with respect to initial conditions.
We will assign to the third class the systems that are not included in the first class, for which the condition is met "each of the function $f_i$ is decreasing on the set $D\subseteq\mathbb R^n$ with respect to all variables on which it explicitly depends, with the exception of variable $x_i,$ $i=1,\ldots,n$".
The conditions for the absence of periodic solutions for autonomous systems of the second order are obtained, complementing the known Bendikson conditions. It is proved that systems of two differential equations of all three specified classes cannot have periodic solutions.
Keywords: systems of differential equations, periodic solutions
Received: 13.11.2023
Accepted: 11.03.2024
Document Type: Article
UDC: 517.925.54
MSC: 34A34, 34C05, 34C25
Language: Russian
Citation: L. I. Rodina, “On some classes of systems of differential equations”, Russian Universities Reports. Mathematics, 29:145 (2024), 77–85
Citation in format AMSBIB
\Bibitem{Rod24}
\by L.~I.~Rodina
\paper On some classes of systems of differential equations
\jour Russian Universities Reports. Mathematics
\yr 2024
\vol 29
\issue 145
\pages 77--85
\mathnet{http://mi.mathnet.ru/vtamu315}
\crossref{https://doi.org/10.20310/2686-9667-2024-29-145-77-85}
Linking options:
  • https://www.mathnet.ru/eng/vtamu315
  • https://www.mathnet.ru/eng/vtamu/v29/i145/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :21
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024