|
MATHEMATICS
Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
D. V. Solomatin Omsk State Pedagogical University, Omsk, Russian Federation
Abstract:
The article presents the characteristic properties of direct products of semigroups with zero admitting outerplanar Cayley graphs, as well as their generalizations in the defining relations of copresentation.
Theorem 1. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits an outerplanar Cayley graph if and only if one of the following conditions holds:
1) $S \cong \langle a\mid a^3 = a^2\rangle^0 \times\langle b \mid b^{h+1}=b^h\rangle^0$ where $h$ is a natural number and $h<4$;
2) $S \cong\langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^ n \langle a_i \mid a_i^{2+1}= a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r\leqslant 2$; or $r = 3$, $n = 1$;
3) $S \cong \langle a\mid a^{r+m}=a^r\rangle^{+0}\times \langle b\mid b_2=b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m \leqslant 2$;
4) $S \cong \langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^n \langle a_i\mid a_i^2= a_i\rangle^{+0}$ where $n = 1$; or $r = 1$, $n = 2$.
Theorem 2. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits a generalized outerplanar Cayley graph if and only if one of the following conditions holds:
1) $S \cong \langle a\mid a^{r+m}=a^r\rangle^0\times \langle b\mid b^{h+t}=b^h\rangle^0$ where for natural numbers $r, m, h, t$ one of the following restrictions is satisfied:
1.1) $r=2$, $m=1$, $h<4$, $t=1$;
1.2) $r=3$, $m=1$, $h=3$, $t=1$;
2) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^{2+1}=a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r \leqslant 3$;
3.1) $S \cong\langle a\mid a^{2+1}= a^2\rangle \times \langle b\mid b^{2+1}= b^2\rangle^{+0}$;
3.2) $S \cong\langle a\mid a^{r+m}= a^r\rangle^{+0} \times \langle b \mid b^2= b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m\leqslant 2$;
4) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^2=a_i\rangle^{+0}$ where $n=1$; or $r=1$, $n=2$.
Keywords:
right Cayley graphs of semigroups, planar graphs, semigroups with zero, direct products of semigroups, outerplanar graphs.
Received: 17.11.2023 Accepted: August 5, 2024
Citation:
D. V. Solomatin, “Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90, 40–49
Linking options:
https://www.mathnet.ru/eng/vtgu1094 https://www.mathnet.ru/eng/vtgu/y2024/i90/p40
|
Statistics & downloads: |
Abstract page: | 23 | Full-text PDF : | 7 | References: | 6 |
|