Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2024, Number 90, Pages 40–49
DOI: https://doi.org/10.17223/19988621/90/4
(Mi vtgu1094)
 

MATHEMATICS

Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs

D. V. Solomatin

Omsk State Pedagogical University, Omsk, Russian Federation
References:
Abstract: The article presents the characteristic properties of direct products of semigroups with zero admitting outerplanar Cayley graphs, as well as their generalizations in the defining relations of copresentation.
Theorem 1. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits an outerplanar Cayley graph if and only if one of the following conditions holds:
1) $S \cong \langle a\mid a^3 = a^2\rangle^0 \times\langle b \mid b^{h+1}=b^h\rangle^0$ where $h$ is a natural number and $h<4$;
2) $S \cong\langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^ n \langle a_i \mid a_i^{2+1}= a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r\leqslant 2$; or $r = 3$, $n = 1$;
3) $S \cong \langle a\mid a^{r+m}=a^r\rangle^{+0}\times \langle b\mid b_2=b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m \leqslant 2$;
4) $S \cong \langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^n \langle a_i\mid a_i^2= a_i\rangle^{+0}$ where $n = 1$; or $r = 1$, $n = 2$.
Theorem 2. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits a generalized outerplanar Cayley graph if and only if one of the following conditions holds:
1) $S \cong \langle a\mid a^{r+m}=a^r\rangle^0\times \langle b\mid b^{h+t}=b^h\rangle^0$ where for natural numbers $r, m, h, t$ one of the following restrictions is satisfied:
1.1) $r=2$, $m=1$, $h<4$, $t=1$;
1.2) $r=3$, $m=1$, $h=3$, $t=1$;
2) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^{2+1}=a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r \leqslant 3$;
3.1) $S \cong\langle a\mid a^{2+1}= a^2\rangle \times \langle b\mid b^{2+1}= b^2\rangle^{+0}$;
3.2) $S \cong\langle a\mid a^{r+m}= a^r\rangle^{+0} \times \langle b \mid b^2= b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m\leqslant 2$;
4) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^2=a_i\rangle^{+0}$ where $n=1$; or $r=1$, $n=2$.
Keywords: right Cayley graphs of semigroups, planar graphs, semigroups with zero, direct products of semigroups, outerplanar graphs.
Received: 17.11.2023
Accepted: August 5, 2024
Document Type: Article
UDC: 512.531.2
MSC: 20M10
Language: Russian
Citation: D. V. Solomatin, “Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90, 40–49
Citation in format AMSBIB
\Bibitem{Sol24}
\by D.~V.~Solomatin
\paper Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2024
\issue 90
\pages 40--49
\mathnet{http://mi.mathnet.ru/vtgu1094}
\crossref{https://doi.org/10.17223/19988621/90/4}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1094
  • https://www.mathnet.ru/eng/vtgu/y2024/i90/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:23
    Full-text PDF :7
    References:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024