Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 6(32), Pages 19–24 (Mi vtgu424)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold

N. A. Daurtseva

Kemerovo State University
Full-text PDF (416 kB) Citations (3)
References:
Abstract: The strictly nearly Kähler 6-manifold $(M, g, J, \omega)$ is researched. Since the class $G_2$ is the orthogonal complement to the class of nearly Kähler structures in the space of all classes of almost Hermitian structures, no strictly nearly Kähler structure can be simultaneously an almost Hermitian structure of the $G_2$ class. Can this class contain other structures, «close» to a strictly nearly Kähler structure, in the case of dimension six? There exist three families of almost Hermitian structures linked with the given structure $(g, J, \omega)$ on $M$, namely, $H_g$, $H_J$, and $H_\omega$ families of almost Hermitian structures with the same metric $g$, or the same almost complex structure $J$, or the same form $\omega$, respectively. The problem whether a structure of the $G_2$ class can be present among structures belonging to those families is studied. It is proved that $H_\omega$ and $H_J$ do not contain structures of the $G_2$ class. By an example of left-invariant structures on $S^3\times S^3=SU(2)\times SU(2)$, it is proved that this is nevertheless possible for structures from $H_g$.
Keywords: Gray–Hervella classification, strictly nearly Kähler manifolds.
Received: 02.07.2014
Document Type: Article
UDC: 514.76
Language: Russian
Citation: N. A. Daurtseva, “On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 6(32), 19–24
Citation in format AMSBIB
\Bibitem{Dau14}
\by N.~A.~Daurtseva
\paper On the existence of $G_2$ class structures on a strictly nearly K\"ahler six-dimensional manifold
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2014
\issue 6(32)
\pages 19--24
\mathnet{http://mi.mathnet.ru/vtgu424}
Linking options:
  • https://www.mathnet.ru/eng/vtgu424
  • https://www.mathnet.ru/eng/vtgu/y2014/i6/p19
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :55
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024