|
Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 6(32), Pages 35–45
(Mi vtgu426)
|
|
|
|
MATHEMATICS
Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups
A. G. Sedykh, A. S. Berezina Kemerovo Institute of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
Abstract:
An irreducible $\mathrm{SO(3)}$-structure can be defined by means of a symmetric tensor field $T$ of type
$(0,3)$ on a manifold $M$.
Definition 1. An $\mathrm{SO(3)}$ structure on a $5$- dimensional Riemannian manifold $(M, g)$ is a structure defined by means of a rank $3$ tensor field $T$ for which the associated linear map
$X\to T_X\in End(TM)$, $X\in TM$, satisfies the following condition:
- symmetricity, i. e. $g(X,T_Y Z) = g(Z,T_Y X) = g(X,T_Z Y)$,
- the trace $tr(T_X) = 0$,
- for any vector field $X \in TM$,
$$
T_X^2X=g(X,X)X.
$$
In any tangent space, it is possible to choose an adapted basis $\{e_1,e_2,e_3,e_4,e_5\}$ in which metrics $g$ and tensor $T$ have the canonical form $g_{ij}=\delta_{ij}$ and
$$
\begin{gathered}
T=\frac12e^1\left(6(e^2)^2+6(e^4)^2-2(e^1)^2-3(e^2)^2-3(e^5)^2\right)+\\
+\frac{3\sqrt3}2e^4\left((e^5)^2-(e^3)^2\right)+3\sqrt3e^2e^3e^5.
\end{gathered}
$$
Her, $\{e_1,e_2,e_3,e_4,e_5\}$ is the dual coframe. Polarising the expression yields components of $T$:
$$
\begin{gathered}
t_{111}=-1,\quad t_{122}=1, \quad t_{144}=1, \quad t_{133}=-\frac12,\quad t_{155}=-\frac12,\\
t_{433}=-\frac{\sqrt3}2,\quad t_{455}=\frac{\sqrt3}2,\quad t_{235}=\frac{\sqrt3}2.
\end{gathered}
$$
Thus, an irreducible $\mathrm{SO(3)}$-structure on a manifold is a Riemannian structure $g$ and a tensor
field $T$ possessing properties 1–3.
Theorem 1. The stabilizer of $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$ embedded into $\mathrm{O(5)}$.
Since the stabilizer $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$, its orbit under the action of $\mathrm{O(5)}$ is a 7-dimension homogeneous space $\mathrm{O(5)/SO(3)}$.
A homogeneous Berger space $\mathrm{SO(5)/SO(3)}$ is topologically equivalent to an $\mathrm{S^3}$ fiber
bundle over $\mathrm{S^4}$.
With respect to the biinvariant scalar product $\langle A,B\rangle=-\frac1{10}tr(AB)$ on $\mathrm{SO(5)}$, a decomposition
of the Lie algebra $\mathrm{so(5)}$ into a direct sum $\mathrm{so(5)} = \mathrm{so(3)} + V$ of the Lie algebra and $\mathrm{ad(SO(3))}$ of an invariant space $V$ has been obtained.
Examples of deformations of the structural tensor $T$ by geodesics $g_t$ of the homogeneous space
$\mathrm{SO(5)/SO(3)}$ are considered, the covariant divergence of the obtained structure tensor is calculated, and the property of nearly integrability is investigated.
Keywords:
special $\mathrm{SO(3)}$ structure, homogeneous Berger space, Lie group.
Received: 14.11.2014
Citation:
A. G. Sedykh, A. S. Berezina, “Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 6(32), 35–45
Linking options:
https://www.mathnet.ru/eng/vtgu426 https://www.mathnet.ru/eng/vtgu/y2014/i6/p35
|
Statistics & downloads: |
Abstract page: | 210 | Full-text PDF : | 67 | References: | 41 |
|