Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 6(32), Pages 35–45 (Mi vtgu426)  

MATHEMATICS

Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups

A. G. Sedykh, A. S. Berezina

Kemerovo Institute of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
References:
Abstract: An irreducible $\mathrm{SO(3)}$-structure can be defined by means of a symmetric tensor field $T$ of type $(0,3)$ on a manifold $M$.
Definition 1. An $\mathrm{SO(3)}$ structure on a $5$-dimensional Riemannian manifold $(M, g)$ is a structure defined by means of a rank $3$ tensor field $T$ for which the associated linear map $X\to T_X\in End(TM)$, $X\in TM$, satisfies the following condition:
  • symmetricity, i. e. $g(X,T_Y Z) = g(Z,T_Y X) = g(X,T_Z Y)$,
  • the trace $tr(T_X) = 0$,
  • for any vector field $X \in TM$,
    $$ T_X^2X=g(X,X)X. $$

In any tangent space, it is possible to choose an adapted basis $\{e_1,e_2,e_3,e_4,e_5\}$ in which metrics $g$ and tensor $T$ have the canonical form $g_{ij}=\delta_{ij}$ and
$$ \begin{gathered} T=\frac12e^1\left(6(e^2)^2+6(e^4)^2-2(e^1)^2-3(e^2)^2-3(e^5)^2\right)+\\ +\frac{3\sqrt3}2e^4\left((e^5)^2-(e^3)^2\right)+3\sqrt3e^2e^3e^5. \end{gathered} $$

Her, $\{e_1,e_2,e_3,e_4,e_5\}$ is the dual coframe. Polarising the expression yields components of $T$:
$$ \begin{gathered} t_{111}=-1,\quad t_{122}=1, \quad t_{144}=1, \quad t_{133}=-\frac12,\quad t_{155}=-\frac12,\\ t_{433}=-\frac{\sqrt3}2,\quad t_{455}=\frac{\sqrt3}2,\quad t_{235}=\frac{\sqrt3}2. \end{gathered} $$

Thus, an irreducible $\mathrm{SO(3)}$-structure on a manifold is a Riemannian structure $g$ and a tensor field $T$ possessing properties 1–3.
Theorem 1. The stabilizer of $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$ embedded into $\mathrm{O(5)}$.
Since the stabilizer $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$, its orbit under the action of $\mathrm{O(5)}$ is a 7-dimension homogeneous space $\mathrm{O(5)/SO(3)}$.
A homogeneous Berger space $\mathrm{SO(5)/SO(3)}$ is topologically equivalent to an $\mathrm{S^3}$ fiber bundle over $\mathrm{S^4}$.
With respect to the biinvariant scalar product $\langle A,B\rangle=-\frac1{10}tr(AB)$ on $\mathrm{SO(5)}$, a decomposition of the Lie algebra $\mathrm{so(5)}$ into a direct sum $\mathrm{so(5)} = \mathrm{so(3)} + V$ of the Lie algebra and $\mathrm{ad(SO(3))}$ of an invariant space $V$ has been obtained.
Examples of deformations of the structural tensor $T$ by geodesics $g_t$ of the homogeneous space $\mathrm{SO(5)/SO(3)}$ are considered, the covariant divergence of the obtained structure tensor is calculated, and the property of nearly integrability is investigated.
Keywords: special $\mathrm{SO(3)}$ structure, homogeneous Berger space, Lie group.
Received: 14.11.2014
Document Type: Article
UDC: 514.76
Language: Russian
Citation: A. G. Sedykh, A. S. Berezina, “Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 6(32), 35–45
Citation in format AMSBIB
\Bibitem{SedBer14}
\by A.~G.~Sedykh, A.~S.~Berezina
\paper Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2014
\issue 6(32)
\pages 35--45
\mathnet{http://mi.mathnet.ru/vtgu426}
Linking options:
  • https://www.mathnet.ru/eng/vtgu426
  • https://www.mathnet.ru/eng/vtgu/y2014/i6/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :67
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024