Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 6(32), Pages 46–54 (Mi vtgu427)  

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Contact metric structures on odd-dimensional unit spheres

Y. V. Slavolyubova

Kemerovo Institute of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
Full-text PDF (409 kB) Citations (2)
References:
Abstract: In this work, the contact structure on the $3$-dimensional unit sphere $S^3\subset\mathrm{R}^4=\mathrm{C}^2$ which arises in Hopf's map $S^1\to S^3\to S^2$ is considered. The group $S^1$ acts on the sphere $S^3\subset\mathrm{R}^4=\mathrm{C}^2$ by the rule $(z_1,z_2)e^{i\varphi}=(z_1e^{i\varphi}, z_2e^{i\varphi})$. The field of speeds of this action defines a characteristic vector field $\xi$ and 2-dimensional subspaces $E_x$ orthogonal to the vector field $\xi$ form a contact structure. The contact form $\eta$ is defined by the equality $\eta(X)=(\xi,X)$. These constructions are generalized in the case of considering the $7$-dimensional unit sphere $S^7$. On the $3$-dimensional unit sphere $S^3$, expressions of the contact metric structure in local coordinates of a stereographic projection are received, the corresponding characteristics are determined: contact form $\eta$, external differential of the contact form $d\eta$, characteristic vector field $\xi$, contact distribution $\mathrm{E}$, and affinor $\varphi$. A contact metric structure on the $7$-dimensional unit sphere is constructed. For the sphere, main characteristics are determined: contact form $\eta$, external differential of the contact form $d\eta$, characteristic vector field $\xi$, contact distribution $\mathrm{E}$, and affinor $\varphi$ are determined. The relation between the contact structure on the $7$-dimensional unit sphere $S^7$ and almost complex structure $\mathrm{J}$ established by means of a projection $\pi$: $S^7\to\mathbf{CP}^3$ on the $3$-dimensional projective.
Keywords: contact structures, contact metric structures, $3$-dimensional sphere, $7$-dimensional sphere, Riemannian metrics.
Received: 09.07.2014
Document Type: Article
UDC: 514.76
Language: Russian
Citation: Y. V. Slavolyubova, “Contact metric structures on odd-dimensional unit spheres”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 6(32), 46–54
Citation in format AMSBIB
\Bibitem{Sla14}
\by Y.~V.~Slavolyubova
\paper Contact metric structures on odd-dimensional unit spheres
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2014
\issue 6(32)
\pages 46--54
\mathnet{http://mi.mathnet.ru/vtgu427}
Linking options:
  • https://www.mathnet.ru/eng/vtgu427
  • https://www.mathnet.ru/eng/vtgu/y2014/i6/p46
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :71
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024