Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, Issue 1, Pages 118–122 (Mi vuu421)  

MATHEMATICS

On the group of isometries of foliated manifold

A. S. Sharipov

Department of Geometry, National University of Uzbekistan, ul. Universitetskaya, 4, Tashkent, 100174, Uzbekistan
References:
Abstract: The question of the group of isometries of a Riemannian manifold is the main problem of the classical Riemannian geometry. Let $G$ denote the group of isometries of a Riemannian manifold $M$ of dimension $n$ with a Riemannian metric $g$. It is known that the group $G$ with the compact-open topology is a Lie group. This paper discusses the question of the existence of isometric maps of the foliated manifold $(M,F)$. We denote the group of all isometries of the foliated Riemannian manifold $(M,F)$ by $G_F$. Studying the structure of the group $G_F$ of the foliated manifold $(M,F)$ is a new and interesting problem. First, this problem is considered in the paper of A. Y. Narmanov and the author, where it was shown that the group $G_F$ with a compact-open topology is a topological group. We consider the question of the structure of the group $G_F$, where $M=R^n$ and $F$ is foliation generated by the connected components of the level surfaces of the smooth function $ f\colon R^n\to R$. It is proved that the group of isometries of foliated Euclidean space is a subgroup of the isometry group of Euclidean space, if the foliation is generated by the level surfaces of a smooth function, which is not a metric.
Keywords: Riemannian manifold, foliation, isometric mapping, foliated manifold, the group of isometries, metric function.
Received: 05.02.2014
Document Type: Article
UDC: 514.3
MSC: 53C12, 53C22
Language: Russian
Citation: A. S. Sharipov, “On the group of isometries of foliated manifold”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, 118–122
Citation in format AMSBIB
\Bibitem{Sha14}
\by A.~S.~Sharipov
\paper On the group of isometries of foliated manifold
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2014
\issue 1
\pages 118--122
\mathnet{http://mi.mathnet.ru/vuu421}
Linking options:
  • https://www.mathnet.ru/eng/vuu421
  • https://www.mathnet.ru/eng/vuu/y2014/i1/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :144
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024