Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, Volume 30, Issue 3, Pages 343–366
DOI: https://doi.org/10.35634/vm200301
(Mi vuu729)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break

A. A. Dzhalilova, J. J. Karimovba

a Department of Mathematics and Natural Sciences, Turin Polytechnic University in Tashkent, ul. Kichik Khalka yuli, 17, Tashkent, 100095, Uzbekistan
b National University of Uzbekistan, ul. Universitetskaya, 4, Tashkent, 100174, Uzbekistan
Full-text PDF (327 kB) Citations (3)
References:
Abstract: Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i. e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A. A. Dzhalilov and K. M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i. e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i. e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.
Keywords: circle homeomorphism, break point, rotation number, invariant measure, thermodynamic formalism.
Funding agency Grant number
The Abdus Salam International Centre for Theoretical Physics (ICTP)
Received: 24.02.2020
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 37A05, 28D05
Language: Russian
Citation: A. A. Dzhalilov, J. J. Karimov, “The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 343–366
Citation in format AMSBIB
\Bibitem{DzhKar20}
\by A.~A.~Dzhalilov, J.~J.~Karimov
\paper The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2020
\vol 30
\issue 3
\pages 343--366
\mathnet{http://mi.mathnet.ru/vuu729}
\crossref{https://doi.org/10.35634/vm200301}
Linking options:
  • https://www.mathnet.ru/eng/vuu729
  • https://www.mathnet.ru/eng/vuu/v30/i3/p343
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:262
    Full-text PDF :148
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024