Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, Volume 34, Issue 2, Pages 182–203
DOI: https://doi.org/10.35634/vm240202
(Mi vuu885)
 

MATHEMATICS

On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral

V. N. Baranov, V. I. Rodionov, A. G. Rodionova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
References:
Abstract: In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.
Keywords: step function, regulated function, generalized Jordan measure, Riemann–Stieltjes integral
Received: 02.11.2023
Accepted: 20.05.2024
Bibliographic databases:
Document Type: Article
UDC: 517.982.22, 517.518.12
MSC: 46B99, 26A42
Language: Russian
Citation: V. N. Baranov, V. I. Rodionov, A. G. Rodionova, “On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:2 (2024), 182–203
Citation in format AMSBIB
\Bibitem{BarRodRod24}
\by V.~N.~Baranov, V.~I.~Rodionov, A.~G.~Rodionova
\paper On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2024
\vol 34
\issue 2
\pages 182--203
\mathnet{http://mi.mathnet.ru/vuu885}
\crossref{https://doi.org/10.35634/vm240202}
Linking options:
  • https://www.mathnet.ru/eng/vuu885
  • https://www.mathnet.ru/eng/vuu/v34/i2/p182
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóêè
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :30
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024