Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 4(35), Pages 75–83
DOI: https://doi.org/10.15688/jvolsu1.2016.4.5
(Mi vvgum119)
 

Mathematics

On construction of the curve corresponding to the subcode of low weight of a rational Goppa code

Yu. S. Kasatkinaa, A. S. Kasatkinab

a Immanuel Kant Baltic Federal University, Kaliningrad
b West branch of Russian Academy of National Economy and Public Administration
References:
Abstract: The theory of codes derived from algebraic curves was initiated by the works of V. D. Goppa. Since that time this theory has received an active development. Construction of certain classes of codes is based on the curves with sufficient number of rational points. In this paper we study curves arising from the subcode of low weight of a rational Goppa code.
According to algorithm of construction, first of all, it is necessary to represent subcode of low weight as a trace code. Let $C_L (D,aP_\infty)$ be a rational Goppa code over $F_p$ with parameters $[n, k]$ and let $D_r$ denote the $r$-dimensional subcode of this code such that
$$\left| {\chi (D_r )} \right| = d_r (C_L (D,aP_\infty )).$$

We need to represent subcode of low weight as follows
$$\mathrm{Tr} _{\mathrm{Con}(D)} (U) = \left\{ {\mathrm{Tr} _{\mathrm{Con}(D)} (R)\left| {R \in U} \right.} \right\} = D_r,$$
where $U$ is $r$-dimensional $F_p$-vector space and $\mathrm{Tr}$ is trace map
$$\mathrm{Tr} :F_{p^m } \to F_p.$$

Vector space $U$ can be constructed in the following way. Let $\left\{c_{1},...,c_{r}\right\}$ be a basis of subcode of low weight of a rational Goppa code. Elements ${R_{1},...,R_{r}}$ correspond to elements of basis and can be constructed as

\begin{multline*} R_{f_i (x)} = (\sum\limits_{s = 0}^{m - 1} {\left( {bx} \right)^{p^s } } )^{a - 1} bx - \sum\limits_{j = 1}^a \alpha _{ij} (\sum\limits_{s = 0}^{m - 1} {(bx)^{p^s } } )^{a - 2} bx\ + \\ + \sum\limits_{j \ne k}^a {\alpha _{ij} \alpha _{ik} } (\sum\limits_{s = 0}^{m - 1} {(bx)^{p^s } } )^{a - 3} bx\ -\\ \cdots + ( - 1)^{a - 2} \sum\limits_{j_1 < \ldots < j_{a - 2} }^a {\alpha _{ij_1 } \cdot \ldots \cdot } \;\alpha _{ij_{a - 2} } \sum\limits_{s = 0}^{m - 1} {(bx)^{p^s } } bx +\\ +( - 1)^{a - 1} \sum\limits_{j_1 < \ldots < j_{a - 1} }^a {\alpha _{ij_1 } \cdot \ldots \cdot } \;\alpha _{ij_{a - 1} } bx + ( - 1)^a \alpha _i. \end{multline*}

Thus we obtain $R_1,...R_r \in F_{p^m}(x)$ such that $\mathrm{Tr} _{\mathrm{Con}(D)} (R_i ) = c_i,\;1 \le i \le r$, where $\left\{c_1,...,c_r\right\}$ is a basis of $D_r$.
We denote $ U = \left\langle {R_1, \ldots, R_r } \right\rangle $. Then $U$ is $r$-dimensional $F_p$-vector space and
$$\mathrm{Tr} _{\mathrm{Con}(D)} (U) = D_r.$$

Let $E_U$ be the function field of curve $C_{D_r}$, corresponding to the subcode of low weight $D_r$. So, the curve over field $F_{p^m} $ corresponds to the subcode of low weight. The equation of this curve is

$$\ y^{p^{r}}-y=\sum\limits_{j = 1}^r {\sum\limits_{i = 0}^{r-1} {\alpha^{j-1}}R^{p^{i}}_{j}}.$$
Keywords: geometric Goppa code, generalized Hemming weight of the code, subcode of low weight, algebraic curve, algorithm for constructing a curve.
Document Type: Article
UDC: 512.77
BBC: 22.147
Language: Russian
Citation: Yu. S. Kasatkina, A. S. Kasatkina, “On construction of the curve corresponding to the subcode of low weight of a rational Goppa code”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 4(35), 75–83
Citation in format AMSBIB
\Bibitem{KasKas16}
\by Yu.~S.~Kasatkina, A.~S.~Kasatkina
\paper On construction of the curve corresponding to the subcode of low weight of a rational Goppa code
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 4(35)
\pages 75--83
\mathnet{http://mi.mathnet.ru/vvgum119}
\crossref{https://doi.org/10.15688/jvolsu1.2016.4.5}
Linking options:
  • https://www.mathnet.ru/eng/vvgum119
  • https://www.mathnet.ru/eng/vvgum/y2016/i4/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :39
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025