Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 4(35), Pages 84–91
DOI: https://doi.org/10.15688/jvolsu1.2016.4.6
(Mi vvgum120)
 

Mathematics

On discreteness of spectrum of Schrödinger operator with bounded potential

A. V. Svetlov

Volgograd State University
References:
Abstract: Let's consider a complete noncompact Riemannian manifold $M$ without boundary which is representable as $K\cup D$, where $K$ is a compact set and $D$ is isometric to the product $\mathbf{ R_0} \times \mathrm{S}_1\times \mathrm{S}_2\times\cdots\times \mathrm{S}_k$ (where $\mathbf{ R_0}=(r_0,+\infty)$, and $\mathrm{S}_i$ are compact Riemannian manifolds without boundary) with metric
$$ds^2=dr^2+q_1^2(r)d\theta_1^2+\cdots+q_k^2(r)d\theta_k^2,$$
where $d\theta_i^2$ is the metric on $\mathbb{S}_i$ and $q_i(r)$ is a smooth positive function on $\mathrm{R}_0$. We assume $\dim\mathbb{S}_i=n_i$ and denote $s(r)=q_1^{n_1}(r)\cdots q_k^{n_k}(r)$. The manifold $M$ is called a manifold with end. Since its end $D$ is a simple warped product, $M$ is the simplest case of a quasimodel manifold.
On the manifold $M$ we study the Laplace–Beltrami operator
$$-\Delta=-\mathrm{div}\nabla$$
and the Schrödinger operator
$$-\Delta=-\mathrm{div}\nabla+c(r,\theta).$$
We denote
$$F(r)=\left(\frac{s'(r)}{2s(r)}\right)' +\left(\frac{s'(r)}{2s(r)}\right)^2.$$

Theorem 1. Let's $c(r,\theta)\geq 0$. The spectrum of the Schrödinger operator $L$ on the manifold $M$ is discrete if one of the following conditions is satisfied:
$$ V(D)<\infty\quad \text{ and }\quad \lim\limits_{r\to \infty}\frac{V(D\setminus B(r))}{\mathrm{cap }(B(1),B(r))}=0,$$
or
$$\mathrm{cap }\, B(1)>0\quad \text{ and }\quad\lim\limits_{r\to \infty}\frac{V(B(r))}{\mathrm{cap }\, B(r)}=0.$$

We can note that the conditions of the theorem 1 are not just sufficient, but necessary for discreteness of the Laplacian spectrum.
Theorem 2. If there is a function $\tilde{c}(r)$ on manifold $M$ such that $c(r,\theta)\geq \tilde{c}(r)$ and $\tilde{c}(r)+F(r)>-C \ (C=\mathrm{const}>0)$, then the spectrum of the Schrödinger operator $L$ on the manifold $M$ is discrete if
$$\forall \omega>0\quad\lim_{r\to\infty}\int\limits_r^{r+\omega}\left(\tilde{c}(r)+F(r)\right)dr=+\infty.$$
Keywords: spectrum discreteness, Schrödinger operator, Riemannian manifolds, quasimodel manifolds, warped products.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02479-р_поволжье_а
Document Type: Article
UDC: 517.984
BBC: 22.162
Language: Russian
Citation: A. V. Svetlov, “On discreteness of spectrum of Schrödinger operator with bounded potential”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 4(35), 84–91
Citation in format AMSBIB
\Bibitem{Sve16}
\by A.~V.~Svetlov
\paper On discreteness of spectrum of Schr\"odinger operator with bounded potential
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 4(35)
\pages 84--91
\mathnet{http://mi.mathnet.ru/vvgum120}
\crossref{https://doi.org/10.15688/jvolsu1.2016.4.6}
Linking options:
  • https://www.mathnet.ru/eng/vvgum120
  • https://www.mathnet.ru/eng/vvgum/y2016/i4/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :72
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025