Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 4(35), Pages 92–107
DOI: https://doi.org/10.15688/jvolsu1.2016.4.7
(Mi vvgum121)
 

Mathematics

Brunn–Minkowski type inequality for generalized power moments in the form of Hadwiger

B. S. Timergaliev

Kazan (Volga Region) Federal University
References:
Abstract: In this paper we built a class of domain functionals in Euclidian space and proved Brunn–Minkowski type inequality applied to the mentioned class. The resulting inequality generalizes corresponding inequality for moments of inertia in relation to the center of mass and hyperplanes proven by H. Hadwiger.
Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$. Define the functional
$$ I(k;m;\Omega)=\int\limits_{\Omega}\left(\alpha_{1}|x_{1}-s_{1}|^{k}+\cdots+\alpha_{n}|x_{n}-s_{n}|^{k}\right)^{m}dx, $$
where $k\in(0,1]$ at $m\in(0,1)\cup(1,+\infty)$ and $k\in(0,+\infty)$ at $m=1$; $\alpha_{j}(j=\overline{1,n})\in(0,+\infty)$—arbitrary real numbers, $s_{1},s_{2},\ldots,s_{n}$—coordinates of the minimum point of the function
$$ \begin{aligned} I(y)=\int\limits_{\Omega} \left(\alpha_{1}|x_{1}-y_{1}|^{k}+\alpha_{2}|x_{2}-y_{2}|^{k}\,+\cdots\right.&\\ &\left. +\cdots\,+\alpha_{n}|x_{n}-y_{n}|^{k}\right)^{m}dx, \ dx=dx_{1}dx_{2}\cdots dx_{n} \end{aligned} $$
of the variables $y=(y_{1},y_{2},\ldots,y_{n})\in \mathbb{R}^{n}$, where $x_{1},x_{2},\ldots,x_{n}$—Cartesian coordinates of the point $x\in\Omega$. The main result of this paper is the following
Theorem. Let $\Omega_{0}, \Omega_{1}$ be a bounded domains in $\mathbb{R}^{n}$, that can be represented as the the union of a finite number of convex domains. Then the functional $I(k;m;\Omega)^{1/(km+n)}$ concave:
$$ I(k;m;\Omega_{t})^{1/(km+n)}\geq(1-t)I(k;m;\Omega_{0})^{1/(km+n)}+tI(k;m;\Omega_{1})^{1/(km+n)}, $$
where $\Omega_{t}=\{(1-t)z_{0}+tz_{1} \ | \ z_{0}\in\Omega_{0}, z_{1}\in\Omega_{1}\}$, $0\leq t\leq 1$, $k\in(0,1]$ at $m\in(0,1)\cup(1,+\infty)$ and $k\in(0,+\infty)$ at $m=1$.
Keywords: Brunn–Minkowski inequality, Prékopa–Leindler inequality, concave function, convex body, power moments.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00351-a
Document Type: Article
UDC: 517.5
BBC: 22.162
Language: Russian
Citation: B. S. Timergaliev, “Brunn–Minkowski type inequality for generalized power moments in the form of Hadwiger”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 4(35), 92–107
Citation in format AMSBIB
\Bibitem{Tim16}
\by B.~S.~Timergaliev
\paper Brunn--Minkowski type inequality for generalized power moments in the form of Hadwiger
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 4(35)
\pages 92--107
\mathnet{http://mi.mathnet.ru/vvgum121}
\crossref{https://doi.org/10.15688/jvolsu1.2016.4.7}
Linking options:
  • https://www.mathnet.ru/eng/vvgum121
  • https://www.mathnet.ru/eng/vvgum/y2016/i4/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :66
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025