Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 4(35), Pages 108–115
DOI: https://doi.org/10.15688/jvolsu1.2016.4.8
(Mi vvgum122)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On non-uniqueness sets for spaces of holomorphic functions

B. N. Khabibullin, F. B. Khabibullin

Bashkir State University, Ufa
Full-text PDF (388 kB) Citations (1)
References:
Abstract: Problems of description of zero subsequences for weight spaces of holomorphic functions are reduced, according to a general scheme, to solving certain problems in weight classes of subharmonic functions.
Let $D$ be a domain in the complex plane $\mathbb C$. We associate with every at most countable sequence $\Lambda = \{\lambda_k\}_{k=1,2, \dots} \subset D$, without accumulation points in $D$, the counting measure $n_{\Lambda}(S) := \sum_{\lambda_k\in S} 1$. We denote by $\mathrm{Hol} (D)$ the vector space of all holomorphic functions in $D$. For $0\neq f\in \mathrm{Hol} (D)$, denote by $\mathrm{Zero}_f$ zero sequence of $f$ with account of multiplicities. A sequence $\Lambda\subset D$ is called the non-uniqueness sequence for a subspace $H\subset \mathrm{Hol} (D)$, if there exists a nonzero function $f\in H$ such that $\Lambda \subset \mathrm{Zero}_f$, i. e. $n_\Lambda (\lambda)\leq n_{\mathrm{Zero}_f}(\lambda)$ for all $\lambda \in D$. We denote by $\mathrm{sbh} (D)$ the convex cone of all subharmonic functions in $D\subset \mathbb{C}$. For $-\infty\not\equiv s\in \mathrm{sbh} (D)$ we denote by $\nu_s$ the Riesz measure of $s$. A Borel positive measure $\nu$ is called the submeasure for a subset $S\subset \mathrm{sbh} (D)$, if there exists a function $s\in S$, $s\not\equiv -\infty$, with the Riesz measure $\nu_s\geq \nu$ on $D$. For a (weight) function $M\colon D\to [-\infty,+\infty]$ we define the weight classes $\mathrm{sbh}(D;M]:=\{s \in \mathrm{sbh} (D) \colon s\leq M +\mathrm{const} \; \text{on } D \}$ and $\mathrm{Hol}(D;\exp M]:=\{f\in \mathrm{Hol} (D)\colon |f|\leq \mathrm{const} \cdot \exp M \; \text{on } D \}$, where $\mathrm{const}$ is a constant. Let $S$ be a subset of the extended complex plane $\mathbb{C}_{\infty}:=\mathbb{C}\cup \{\infty\}$. Denote by $\mathrm{clos} S$ and $\mathrm{bd} S$ the closure and the boundary of $S$ in $\mathbb{C}_{\infty}$ resp. Let $\mathrm{dist} (\cdot , \cdot)$ be the Euclidean distance between two objects (points or subsets) in $\mathbb{C}$. Let $d\colon D\to (0,1]$ be a continuous function such that $0<d(z)<\mathrm{dist}(z, \mathrm{bd} D)$, $z\in D$. We will juxtapose to a weight function $N \colon D \to [-\infty,+\infty]$ its average value of $N$ over the disk $\{z'\in \mathbb{C} \colon |z'-z|<r\}$:
\begin{equation*} B (z,r;N):=\frac{1}{\pi r^2}\int_0^{2\pi}\int_0^r N(z+te^{i\theta}) t\, d t \,d \theta, \end{equation*}
and some its “lifting” $N^{\uparrow}\colon D\to [-\infty,+\infty]$ so that
$$ \begin{aligned} N^{\uparrow}(z)&:= B(z,d(z);N)+\ln\frac{1}{d(z)}, \quad \text{if} \; \mathbb{C}_{\infty}\setminus \mathrm{clos} D\neq \varnothing; \\ &N^{\uparrow}(z):= B\Bigl(z,\frac{1}{(1+|z|)^P};N\Bigr), \quad \text{if} \; D=\mathbb{C}, \end{aligned} $$
where $P\geq 0$ is an arbitrary fixed number.
Theorem 1. Let $N,M, M-N\in \mathrm{sbh} (D)$, $N,M\neq \boldsymbol{-\infty}$, and $\Lambda$ be a sequence in $D$. If $\Lambda$ is the non-uniqueness sequence for $\mathrm{Hol}(D;\exp N]$, then $n_\Lambda+\nu_{M-N}$ is submeasure for $\mathrm{sbh}(D;M]$. Conversely, if $n_\Lambda+\nu_{M-N}$ is a submeasure for $\mathrm{sbh}(D;M]$ and $N$ is a continuous function on $D$, then $\Lambda$ is a non-uniqueness sequence for $\mathrm{Hol}(D;\exp N^{\uparrow}]$ with a suitable lifting $N^{\uparrow}$ (see above cases $D=\mathbb{C}$ with an arbitrary fixed $P\geq 0$ and $\mathbb{C}_{\infty}\setminus \mathrm{clos} D\neq \varnothing$).
We also consider an important special case of subharmonic positively homogeneous of degree $\rho>0$ weight functions $N, M$ on $\mathbb{C}$ (see Section 2, Theorem 2).
Keywords: holomorphic function, zero sequence, subharmonic function, Riesz measure, non-uniqueness sequence.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00024-a
Document Type: Article
UDC: 517.53 : 517.574
BBC: 22.161
Language: Russian
Citation: B. N. Khabibullin, F. B. Khabibullin, “On non-uniqueness sets for spaces of holomorphic functions”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 4(35), 108–115
Citation in format AMSBIB
\Bibitem{KhaKha16}
\by B.~N.~Khabibullin, F.~B.~Khabibullin
\paper On non-uniqueness sets for spaces of holomorphic functions
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 4(35)
\pages 108--115
\mathnet{http://mi.mathnet.ru/vvgum122}
\crossref{https://doi.org/10.15688/jvolsu1.2016.4.8}
Linking options:
  • https://www.mathnet.ru/eng/vvgum122
  • https://www.mathnet.ru/eng/vvgum/y2016/i4/p108
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :69
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025