Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2024, Volume 17, Issue 1, Pages 17–26
DOI: https://doi.org/10.14529/mmp240102
(Mi vyuru708)
 

Mathematical Modelling

Stability of solutions to the stochastic Oskolkov equation and stabilization

O. G. Kitaeva

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: This paper studies the stability of solutions to the stochastic Oskolkov equation describing a plane-parallel flow of a viscoelastic fluid. This is the equation we consider in the form of a stochastic semilinear Sobolev type equation. First, we consider the solvability of the stochastic Oskolkov equation by the stochastic phase space method. Secondly, we consider the stability of solutions to this equation. The necessary conditions for the existence of stable and unstable invariant manifolds of the stochastic Oskolkov equation are proved. When solving the stabilization problem, this equation is considered as a reduced stochastic system of equations. The stabilization problem is solved on the basis of the feedback principle; graphs of the solution before stabilization and after stabilization are shown.
Keywords: the Oskolkov equation, stochastic Sobolev-type equations, invariant manifolds, the stabilization problem.
Received: 03.08.2023
Document Type: Article
UDC: 517.9
MSC: 35S10, 60G99
Language: English
Citation: O. G. Kitaeva, “Stability of solutions to the stochastic Oskolkov equation and stabilization”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024), 17–26
Citation in format AMSBIB
\Bibitem{Kit24}
\by O.~G.~Kitaeva
\paper Stability of solutions to the stochastic Oskolkov equation and stabilization
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2024
\vol 17
\issue 1
\pages 17--26
\mathnet{http://mi.mathnet.ru/vyuru708}
\crossref{https://doi.org/10.14529/mmp240102}
Linking options:
  • https://www.mathnet.ru/eng/vyuru708
  • https://www.mathnet.ru/eng/vyuru/v17/i1/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:21
    Full-text PDF :9
    References:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024