Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 62, Pages 21–26 (Mi znsl2032)  

This article is cited in 2 scientific papers (total in 3 papers)

Nonspectral singularities of Green's function for the Helmholtz equation in the exterior of an arbitrary convex polygon

V. M. Babich, N. S. Grigor'ev
Full-text PDF (326 kB) Citations (3)
Abstract: For the case of the exterior of an arbitrary convex polygon, an asymptotic expression is obtained at the physical level of rigor for the nonspectral singularities closest to the axis $\operatorname{Im}k=0$ of Green's function for the Helmholtz equation $(\Delta+k^2)q=0$ (with Neumann boundary conditions). The validity of this asymptotic expression is verified in the limiting case of a segment by analyzing the exact solution obtained by separation of variables. A geometrical interpretation of the asymptotic equations for the eigenfunctions of the Laplace operator in terms of geometrical optics is proposed.
English version:
Journal of Soviet Mathematics, 1979, Volume 11, Issue 5, Pages 676–679
DOI: https://doi.org/10.1007/BF01455044
Bibliographic databases:
UDC: 534.213
Language: Russian
Citation: V. M. Babich, N. S. Grigor'ev, “Nonspectral singularities of Green's function for the Helmholtz equation in the exterior of an arbitrary convex polygon”, Mathematical problems in the theory of wave propagation. Part 8, Zap. Nauchn. Sem. LOMI, 62, "Nauka", Leningrad. Otdel., Leningrad, 1976, 21–26; J. Soviet Math., 11:5 (1979), 676–679
Citation in format AMSBIB
\Bibitem{BabGri76}
\by V.~M.~Babich, N.~S.~Grigor'ev
\paper Nonspectral singularities of Green's function for the Helmholtz equation in the exterior of an arbitrary convex polygon
\inbook Mathematical problems in the theory of wave propagation. Part~8
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 62
\pages 21--26
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=481453}
\zmath{https://zbmath.org/?q=an:0401.35031|0333.35024}
\transl
\jour J. Soviet Math.
\yr 1979
\vol 11
\issue 5
\pages 676--679
\crossref{https://doi.org/10.1007/BF01455044}
Linking options:
  • https://www.mathnet.ru/eng/znsl2032
  • https://www.mathnet.ru/eng/znsl/v62/p21
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024