Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 40, Pages 94–100 (Mi znsl2684)  

A proof scheme in discrete mathematics

Yu. V. Matiyasevich
Abstract: The following scheme is proposed as apossible pattern for proofs in discrete mathematics. Let some property $P$ of discrete objects be fixed and for any object $X$ a formal system $\mathfrak P_x$ be specified such that an object $X$ has the property $P$ if and only if a formula of a certain type (one of so called final formulas) is deducible in $\mathfrak P_x$. To prove the implication $P(X)\Longrightarrow Q(X)$ one can specify a property $Q^*$ (defined on couples $\langle X,P\rangle$ where $P$ is a formula) such that $Q^*$ is posessed by axioms of $\mathfrak P_x$ and is inherited by conclusions of the rules of $\mathfrak P_x$, for every final formula $P$ $Q^*(X,P)$ implies $Q(X)$. A new proof according to this scheme is given to a known theorem in the theory of graph-coloring.
Bibliographic databases:
UDC: 51.01:518.5+519.1
Language: Russian
Citation: Yu. V. Matiyasevich, “A proof scheme in discrete mathematics”, Studies in constructive mathematics and mathematical logic. Part VI, Zap. Nauchn. Sem. LOMI, 40, "Nauka", Leningrad. Otdel., Leningrad, 1974, 94–100
Citation in format AMSBIB
\Bibitem{Mat74}
\by Yu.~V.~Matiyasevich
\paper A~proof scheme in discrete mathematics
\inbook Studies in constructive mathematics and mathematical logic. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1974
\vol 40
\pages 94--100
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2684}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=363823}
\zmath{https://zbmath.org/?q=an:0359.68106}
Linking options:
  • https://www.mathnet.ru/eng/znsl2684
  • https://www.mathnet.ru/eng/znsl/v40/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:885
    Full-text PDF :199
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024