Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 109, Pages 134–178 (Mi znsl3923)  

This article is cited in 207 scientific papers (total in 208 papers)

Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model

L. A. Takhtadzhyan, L. D. Faddeev
Abstract: The work gives a consistent and uniform exposition of all known results related to Heisenberg model. The classification of excitations is presented and their scattering is described both in ferromagnetic and the antiferromagnetic cases. It is shown that in the antiferromagnetic case there exists only one excitation with spin 1/2 which is a kink in the following sense: in physical states there is only an even number of kinks-spin waves, therefore they always have an integer spin. Thus, it is shown that the conventional picture of excitations is wrong in the antiferromagnetic case and the spin wave has spin 1/2, matrix is calculated.
English version:
Journal of Soviet Mathematics, 1984, Volume 24, Issue 2, Pages 241–267
DOI: https://doi.org/10.1007/BF01087245
Bibliographic databases:
Document Type: Article
UDC: 536.7
Language: Russian
Citation: L. A. Takhtadzhyan, L. D. Faddeev, “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, Differential geometry, Lie groups and mechanics. Part IV, Zap. Nauchn. Sem. LOMI, 109, "Nauka", Leningrad. Otdel., Leningrad, 1981, 134–178; J. Soviet Math., 24:2 (1984), 241–267
Citation in format AMSBIB
\Bibitem{TakFad81}
\by L.~A.~Takhtadzhyan, L.~D.~Faddeev
\paper Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model
\inbook Differential geometry, Lie groups and mechanics. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 109
\pages 134--178
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=629119}
\zmath{https://zbmath.org/?q=an:0532.47009|0471.47009}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 24
\issue 2
\pages 241--267
\crossref{https://doi.org/10.1007/BF01087245}
Linking options:
  • https://www.mathnet.ru/eng/znsl3923
  • https://www.mathnet.ru/eng/znsl/v109/p134
  • This publication is cited in the following 208 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:738
    Full-text PDF :329
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024