Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 140, Pages 6–17 (Mi znsl4065)  

This article is cited in 11 scientific papers (total in 12 papers)

Scattering problem for the Schrödinger equation in the case of a potential linear in time and coordinate. I. Asymptotics in the shadow zone

V. M. Babich, V. P. Smyshlyaev
Abstract: The formal asymptotics of the scattering problem for the Schrödinger equation with a linear potential as $x+|t|\to+\infty$ is studied. In the shadow zone a formal asymptotic expansion is constructed which is matched with the known asymptotics as $t\to-\infty$. The expansion constructed loses asymptotic character near the curve $x=\frac16t^3$ (in the so-called projector zone). An assumption regarding the analogous behavior of the asymptotic series in the projector zone makes it possible to construct an expansion in the post-projection zone which goes over into the formulas for creeping waves.
English version:
Journal of Soviet Mathematics, 1986, Volume 32, Issue 2, Pages 103–112
DOI: https://doi.org/10.1007/BF01084146
Bibliographic databases:
Document Type: Article
UDC: 517.934
Language: Russian
Citation: V. M. Babich, V. P. Smyshlyaev, “Scattering problem for the Schrödinger equation in the case of a potential linear in time and coordinate. I. Asymptotics in the shadow zone”, Mathematical problems in the theory of wave propagation. Part 14, Zap. Nauchn. Sem. LOMI, 140, "Nauka", Leningrad. Otdel., Leningrad, 1984, 6–17; J. Soviet Math., 32:2 (1986), 103–112
Citation in format AMSBIB
\Bibitem{BabSmy84}
\by V.~M.~Babich, V.~P.~Smyshlyaev
\paper Scattering problem for the Schr\"odinger equation in the case of a~potential linear in time and coordinate.~I. Asymptotics in the shadow zone
\inbook Mathematical problems in the theory of wave propagation. Part~14
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 140
\pages 6--17
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=765714}
\zmath{https://zbmath.org/?q=an:0557.35024}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 32
\issue 2
\pages 103--112
\crossref{https://doi.org/10.1007/BF01084146}
Linking options:
  • https://www.mathnet.ru/eng/znsl4065
  • https://www.mathnet.ru/eng/znsl/v140/p6
  • This publication is cited in the following 12 articles:
    1. Ekaterina A. Zlobina, Aleksei P. Kiselev, “The Malyuzhinets—Popov diffraction problem revisited”, Wave Motion, 121 (2023), 103172  crossref
    2. St. Petersburg Math. J., 33:2 (2022), 387–403  mathnet  crossref
    3. J. R. OCKENDON, R. H. TEW, “Thin-layer solutions of the Helmholtz equation”, Eur. J. Appl. Math, 32:5 (2021), 769  crossref
    4. P.S. Petrov, X. Antoine, “Pseudodifferential adiabatic mode parabolic equations in curvilinear coordinates and their numerical solution”, Journal of Computational Physics, 410 (2020), 109392  crossref
    5. A. Ya. Kazakov, ““Separation of variables” in the model problems of the diffraction theory. Formal scheme”, J. Math. Sci. (N. Y.), 243:5 (2019), 715–725  mathnet  mathnet  crossref  scopus
    6. D.P. Hewett, “Tangent ray diffraction and the Pekeris caret function”, Wave Motion, 57 (2015), 257  crossref
    7. J. R. Ockendon, R. H. Tew, “Thin-Layer Solutions of the Helmholtz and Related Equations”, SIAM Rev., 54:1 (2012), 3  crossref
    8. A. Ya. Kazakov, “Special function related to the scattering of the whispering gallery mode at the point of local straightening”, J. Math. Sci. (N. Y.), 128:2 (2005), 2782–2786  mathnet  mathnet  crossref
    9. A Ya Kazakov, “Special function related to the concave convex boundary problem of the diffraction theory”, J. Phys. A: Math. Gen., 36:14 (2003), 4127  crossref
    10. V. S. Buldyrev, A. M. Vershik, I. A. Ibragimov, A. M. Il'in, A. P. Kiselev, L. D. Faddeev, “Vasilii Mikhailovich Babich (on his 70th birthday)”, Russian Math. Surveys, 57:3 (2002), 627–635  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. V. M. Babich, V. P. Smyshlyaev, “The scattering problem for the Schr�dinger equation with a potential linear in time and in space. II. Correctness, smoothness, behavior of the solution at infinity”, J Math Sci, 38:1 (1987), 1562  crossref
    12. V. P. Smyshlyaev, “Short-wave scattering near the boundry inflection point”, J Math Sci, 38:1 (1987), 1670  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :77
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025