Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 393, Pages 23–28 (Mi znsl4613)  

This article is cited in 7 scientific papers (total in 7 papers)

Asymptotic solution of Hamilton–Jacobi equation concentrated near surface

V. M. Babicha, A. I. Popovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
b Saint-Petersburg State University, St. Petersburg, Russia
Full-text PDF (154 kB) Citations (7)
References:
Abstract: When constructing asymptotic solutions of equations describing waves concentrated near moving lines or surfaces, specific solutions (also asymptotical) of the Hamilton–Jacobi equation play a central role. These solutions are real on some surface and complex outside it. Solutions of such type were firstly considered by V. P. Maslov ([1, part 1]). To give mathematical description of some types of waves not considered earlier, the authors come back to the solutions of the Hamilton–Jacobi equations. For the applications that we keep in mind, it is necessary to describe thoroughly constructions leading to the solution of the Hamilton–Jacobi equation in the proper form. This paper is devoted to this sort of description.
Key words and phrases: Hamilton–Jacobi equation, asymptotic expansion.
Received: 20.09.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 4, Pages 523–525
DOI: https://doi.org/10.1007/s10958-012-0935-8
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: V. M. Babich, A. I. Popov, “Asymptotic solution of Hamilton–Jacobi equation concentrated near surface”, Mathematical problems in the theory of wave propagation. Part 41, Zap. Nauchn. Sem. POMI, 393, POMI, St. Petersburg, 2011, 23–28; J. Math. Sci. (N. Y.), 185:4 (2012), 523–525
Citation in format AMSBIB
\Bibitem{BabPop11}
\by V.~M.~Babich, A.~I.~Popov
\paper Asymptotic solution of Hamilton--Jacobi equation concentrated near surface
\inbook Mathematical problems in the theory of wave propagation. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 393
\pages 23--28
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4613}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870202}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 185
\issue 4
\pages 523--525
\crossref{https://doi.org/10.1007/s10958-012-0935-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866561695}
Linking options:
  • https://www.mathnet.ru/eng/znsl4613
  • https://www.mathnet.ru/eng/znsl/v393/p23
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :101
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024