|
Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 178, Pages 120–145
(Mi znsl4678)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations
M. Sh. Birman, M. Z. Solomyak
Abstract:
For positive self-adjoint operators $A_0$, $A_1$ on Hilbert
spaces $\mathcal{H}_0$, $\mathcal{H}_1$ and for an operator
$\mathcal{J}: \mathcal{H}_0\to\mathcal{H}_1$, the following
estimate is obtained:
$$
|\alpha^{-1}(A_1^\alpha\mathcal{J}-\mathcal{J}A_0^\alpha)|_\gamma\leqslant A_1^{-\delta}(A_1\mathcal{J}-\mathcal{J}A_0)A_0^{-\delta},\quad 2\delta=1-\alpha,\quad-1<\alpha<1.
$$
Here $|\cdot|_\gamma$ denotes the norm in some symmetric-normed operator
ideal $\gamma$. Some generalizations of this estimate are presented
too. Applications to the differential operators are discussed.
Citation:
M. Sh. Birman, M. Z. Solomyak, “Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations”, Investigations on linear operators and function theory. Part 18, Zap. Nauchn. Sem. LOMI, 178, "Nauka", Leningrad. Otdel., Leningrad, 1989, 120–145; J. Soviet Math., 61:2 (1992), 2018–2035
Linking options:
https://www.mathnet.ru/eng/znsl4678 https://www.mathnet.ru/eng/znsl/v178/p120
|
Statistics & downloads: |
Abstract page: | 229 | Full-text PDF : | 77 |
|