Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 178, Pages 120–145 (Mi znsl4678)  

This article is cited in 6 scientific papers (total in 6 papers)

Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations

M. Sh. Birman, M. Z. Solomyak
Abstract: For positive self-adjoint operators $A_0$, $A_1$ on Hilbert spaces $\mathcal{H}_0$, $\mathcal{H}_1$ and for an operator $\mathcal{J}: \mathcal{H}_0\to\mathcal{H}_1$, the following estimate is obtained:
$$ |\alpha^{-1}(A_1^\alpha\mathcal{J}-\mathcal{J}A_0^\alpha)|_\gamma\leqslant A_1^{-\delta}(A_1\mathcal{J}-\mathcal{J}A_0)A_0^{-\delta},\quad 2\delta=1-\alpha,\quad-1<\alpha<1. $$
Here $|\cdot|_\gamma$ denotes the norm in some symmetric-normed operator ideal $\gamma$. Some generalizations of this estimate are presented too. Applications to the differential operators are discussed.
English version:
Journal of Soviet Mathematics, 1992, Volume 61, Issue 2, Pages 2018–2035
DOI: https://doi.org/10.1007/BF01095665
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: Russian
Citation: M. Sh. Birman, M. Z. Solomyak, “Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations”, Investigations on linear operators and function theory. Part 18, Zap. Nauchn. Sem. LOMI, 178, "Nauka", Leningrad. Otdel., Leningrad, 1989, 120–145; J. Soviet Math., 61:2 (1992), 2018–2035
Citation in format AMSBIB
\Bibitem{BirSol89}
\by M.~Sh.~Birman, M.~Z.~Solomyak
\paper Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations
\inbook Investigations on linear operators and function theory. Part~18
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 178
\pages 120--145
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4678}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1037767}
\zmath{https://zbmath.org/?q=an:0784.47011|0709.47004}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 61
\issue 2
\pages 2018--2035
\crossref{https://doi.org/10.1007/BF01095665}
Linking options:
  • https://www.mathnet.ru/eng/znsl4678
  • https://www.mathnet.ru/eng/znsl/v178/p120
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024