Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 169, Pages 122–140 (Mi znsl5604)  

This article is cited in 2 scientific papers (total in 2 papers)

Bethe-ansats for $SO(N)$-invariant transfermatrices

N. Yu. Reshetikhin
Full-text PDF (702 kB) Citations (2)
Abstract: The matrix version of algebraic Bethe ansatz is proposed for $R$-matrices with special structure. It is shown that $SO(N)$-invariant $R$-matrices acting in spinor representation of $SO(N)$ have this structure. The eigenvalues of corresponding transfer-matrices are calculated.
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. Yu. Reshetikhin, “Bethe-ansats for $SO(N)$-invariant transfermatrices”, Questions of quantum field theory and statistical physics. Part 8, Zap. Nauchn. Sem. LOMI, 169, "Nauka", Leningrad. Otdel., Leningrad, 1988, 122–140
Citation in format AMSBIB
\Bibitem{Res88}
\by N.~Yu.~Reshetikhin
\paper Bethe-ansats for $SO(N)$-invariant transfermatrices
\inbook Questions of quantum field theory and statistical physics. Part~8
\serial Zap. Nauchn. Sem. LOMI
\yr 1988
\vol 169
\pages 122--140
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5604}
\zmath{https://zbmath.org/?q=an:0673.22013|0723.22026}
Linking options:
  • https://www.mathnet.ru/eng/znsl5604
  • https://www.mathnet.ru/eng/znsl/v169/p122
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :119
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024