|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 210, Pages 30–37
(Mi znsl5856)
|
|
|
|
The uniqueness of the Cauchy problem solution for the Maxwell equations, when the initial data are fixed on a time-like surface
V. M. Babich St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Abstract:
The uniqueness theorem for the Canchy problem
μc∂→H∂t=−rot→E, divμ→H=0,εc∂→E∂t=−rot→H, divε→E=0,ε>0, μ>0,→H|Σ=0,→E|Σ=0,Σ=Γ×[0⩽t⩽2T],0<T<+∞,
(ε=ε(x), μ=μ(x) are analytical functions, Γ⊂R3 – an analytical surface) is proved. Bibliography: 5 titles.
Received: 22.07.1993
Citation:
V. M. Babich, “The uniqueness of the Cauchy problem solution for the Maxwell equations, when the initial data are fixed on a time-like surface”, Mathematical problems in the theory of wave propagation. Part 23, Zap. Nauchn. Sem. POMI, 210, Nauka, St. Petersburg, 1994, 30–37; J. Math. Sci., 83:2 (1997), 180–184
Linking options:
https://www.mathnet.ru/eng/znsl5856 https://www.mathnet.ru/eng/znsl/v210/p30
|
Statistics & downloads: |
Abstract page: | 172 | Full-text PDF : | 56 |
|