Abstract:
We give an exhaustive description of the family of infinite geodesics in the discrete Heisenberg group (with respect to the standard generating set). The classification of infinite geodesics is needed to describe the so-called absolute (exit boundary) of a group. The absolute of the discrete Heisenberg group will be described in a forthcoming paper.
Key words and phrases:
discrete Heisenberg group, normal form, absolute, exit-boundary, geodesic.
Citation:
A. M. Vershik, A. V. Malyutin, “Infinite geodesics in the discrete Heisenberg group”, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Zap. Nauchn. Sem. POMI, 462, POMI, St. Petersburg, 2017, 39–51; J. Math. Sci. (N. Y.), 232:2 (2018), 121–128
\Bibitem{VerMal17}
\by A.~M.~Vershik, A.~V.~Malyutin
\paper Infinite geodesics in the discrete Heisenberg group
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 462
\pages 39--51
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6495}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 2
\pages 121--128
\crossref{https://doi.org/10.1007/s10958-018-3862-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047408339}
Linking options:
https://www.mathnet.ru/eng/znsl6495
https://www.mathnet.ru/eng/znsl/v462/p39
This publication is cited in the following 2 articles:
A. M. Vershik, A. V. Malyutin, “The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts”, Funct. Anal. Appl., 52:3 (2018), 163–177
A. M. Vershik, A. V. Malyutin, “Asymptotic behavior of the number of geodesics in the discrete Heisenberg group”, J. Math. Sci. (N. Y.), 240:5 (2019), 525–534