Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 491, Pages 27–42 (Mi znsl6938)  

Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system

V. Borovitskiyab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
References:
Abstract: We prove a version of Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system: for any family of disjoint rectangles $I_k = I_k^1 \times I_k^2$ in ${\mathbb{Z}_+ \times \mathbb{Z}_+}$ and a family of functions $f_k$ with Walsh spectrum inside $I_k$ the following is true
$$ \left\|\sum\limits_k f_k\right\|_{L^p} \leq C_p \left\|\left(\sum\limits_{k = 1}^\infty |f_k|^2\right)^{1/2}\right\|_{L^p} , 1 < p \leq 2, $$
where $C_p$ does not depend on the choice of rectangles $\{I_k\}$ or functions $\{f_k\}$. The arguments are based on the atomic theory of two-parameter martingale Hardy spaces. In the course of the proof, we formulate a two-parametric version of the Gundy theorem on the boundedness of operators taking martingales to measurable functions, which might be of independent interest.
Key words and phrases: Littlewood-Paley inequality, Rubio de Francia inequality, Walsh system, Gundy's theorem, martingale, Hardy space, two-parameter, multi-parameter singular integral operator.
Received: 27.08.2020
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. Borovitskiy, “Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system”, Investigations on linear operators and function theory. Part 48, Zap. Nauchn. Sem. POMI, 491, POMI, St. Petersburg, 2020, 27–42
Citation in format AMSBIB
\Bibitem{Bor20}
\by V.~Borovitskiy
\paper Littlewood--Paley--Rubio de Francia inequality for the two-parameter Walsh system
\inbook Investigations on linear operators and function theory. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 491
\pages 27--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6938}
Linking options:
  • https://www.mathnet.ru/eng/znsl6938
  • https://www.mathnet.ru/eng/znsl/v491/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :36
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024