Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 520, Pages 124–138 (Mi znsl7314)  

Scalar product of the five-vertex model and complete symmetric polynomials

N. M. Bogolyubov, C. L. Malyshev

St.Petersburg Department of Steklov Institute of Mathematics, RAS, Fontanka 27, St.-Petersburg, Russia
References:
Abstract: The scalar product of the state-vectors of the exactly solvable five-vertex model with the fixed boundary conditions is considered. Various relations including those in terms of complete symmetric polynomials are derived. The limiting forms of the obtained answers may be interpreted in terms of random walks on a square grid.
Key words and phrases: five-vertex model, integrable models, Quantum Inverse Scattering Method, symmetric polynomials, random walks.
Funding agency Grant number
Russian Science Foundation 23-11-00311
The work was supported by the Russian Science Foundation (Grant 23-11-00311).
Received: 03.07.2023
Document Type: Article
UDC: 517
Language: English
Citation: N. M. Bogolyubov, C. L. Malyshev, “Scalar product of the five-vertex model and complete symmetric polynomials”, Questions of quantum field theory and statistical physics. Part 29, Zap. Nauchn. Sem. POMI, 520, POMI, St. Petersburg, 2023, 124–138
Citation in format AMSBIB
\Bibitem{BogMal23}
\by N.~M.~Bogolyubov, C.~L.~Malyshev
\paper Scalar product of the five-vertex model and complete symmetric polynomials
\inbook Questions of quantum field theory and statistical physics. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 520
\pages 124--138
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7314}
Linking options:
  • https://www.mathnet.ru/eng/znsl7314
  • https://www.mathnet.ru/eng/znsl/v520/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :27
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024