Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 533, Pages 55–76 (Mi znsl7466)  

Three-dimensional inverse acoustic scattering problem by the BC-method

M. I. Belishev, A. F. Vakulenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $\Sigma:=[0,\infty)\times S^2$, $\mathscr F:=L_2(\Sigma)$. The forward acoustic scattering problem under consideration is to find $u=u^f(x,t)$ satisfying
\begin{align*} &u_{tt}-\Delta u+qu=0, && (x,t) \in {\mathbb R}^3 \times (-\infty,\infty); \tag{48}\\ &u \mid_{|x|<-t} =0 , && t<0; \tag{49}\\ &\lim_{s \to -\infty} s u((-s+\tau) \omega,s)=f(\tau,\omega), && (\tau,\omega) \in \Sigma; \tag{50} \end{align*}
for a real valued compactly supported potential $q\in L_\infty(\mathbb R^3)$ and a control $f \in\mathscr F$. The response operator $R: \mathscr F\to\mathscr F$,
\begin{align*} & (Rf)(\tau ,\omega ) := \lim_{s \to +\infty} s u^f((s+\tau ) \omega ,s), (\tau ,\omega ) \in \Sigma \end{align*}
depends on $q$ locally: if $\xi>0$ and $f\in\mathscr F^\xi:=\{f\in\mathscr F | f \mid_{[0,\xi)}=0\}$ holds, then the values $(Rf) \mid_{\tau\geqslant\xi}$ are determined by $q \mid_{|x|\geqslant\xi}$ (do not depend on $q \mid_{|x|<\xi}$). The inverse problem is: for an arbitrarily fixed $\xi>0$, to determine $q\mid_{|x|\geqslant\xi}$ from $X^\xi R\upharpoonright\mathscr F^\xi$, where $X^\xi$ is the projection in $\mathscr F$ onto $\mathscr F^\xi$. It is solved by a relevant version of the boundary control method. The key point of the approach are recent results on the controllability of the system (48)–(50).
Key words and phrases: three-dimensional dynamical system governed by the locally perturbed wave equation, determination of potential from inverse scattering data, boundary control method.
Received: 29.08.2024
Document Type: Article
UDC: 517
Language: Russian
Citation: M. I. Belishev, A. F. Vakulenko, “Three-dimensional inverse acoustic scattering problem by the BC-method”, Mathematical problems in the theory of wave propagation. Part 54, Zap. Nauchn. Sem. POMI, 533, POMI, St. Petersburg, 2024, 55–76
Citation in format AMSBIB
\Bibitem{BelVak24}
\by M.~I.~Belishev, A.~F.~Vakulenko
\paper Three-dimensional inverse acoustic scattering problem by the BC-method
\inbook Mathematical problems in the theory of wave propagation. Part~54
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 533
\pages 55--76
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7466}
Linking options:
  • https://www.mathnet.ru/eng/znsl7466
  • https://www.mathnet.ru/eng/znsl/v533/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:21
    Full-text PDF :5
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025