|
Zapiski Nauchnykh Seminarov POMI, 2024, Volume 533, Pages 55–76
(Mi znsl7466)
|
|
|
|
Three-dimensional inverse acoustic scattering problem by the BC-method
M. I. Belishev, A. F. Vakulenko St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
Let $\Sigma:=[0,\infty)\times S^2$, $\mathscr F:=L_2(\Sigma)$. The forward acoustic scattering problem under consideration is to find $u=u^f(x,t)$ satisfying
\begin{align*} &u_{tt}-\Delta u+qu=0, && (x,t) \in {\mathbb R}^3 \times (-\infty,\infty); \tag{48}\\
&u \mid_{|x|<-t} =0 , && t<0; \tag{49}\\
&\lim_{s \to -\infty} s u((-s+\tau) \omega,s)=f(\tau,\omega), && (\tau,\omega) \in \Sigma; \tag{50}
\end{align*}
for a real valued compactly supported potential $q\in L_\infty(\mathbb R^3)$ and a control $f \in\mathscr F$. The response operator $R: \mathscr F\to\mathscr F$, \begin{align*} & (Rf)(\tau ,\omega ) := \lim_{s \to +\infty} s u^f((s+\tau ) \omega ,s), (\tau ,\omega ) \in \Sigma \end{align*} depends on $q$ locally: if $\xi>0$ and $f\in\mathscr F^\xi:=\{f\in\mathscr F | f \mid_{[0,\xi)}=0\}$ holds, then the values $(Rf) \mid_{\tau\geqslant\xi}$ are determined by $q \mid_{|x|\geqslant\xi}$ (do not depend on $q \mid_{|x|<\xi}$). The inverse problem is: for an arbitrarily fixed $\xi>0$, to determine $q\mid_{|x|\geqslant\xi}$ from $X^\xi R\upharpoonright\mathscr F^\xi$, where $X^\xi$ is the projection in $\mathscr F$ onto $\mathscr F^\xi$. It is solved by a relevant version of the boundary control method. The key point of the approach are recent results on the controllability of the system (48)–(50).
Key words and phrases:
three-dimensional dynamical system governed by the locally perturbed wave equation, determination of potential from inverse scattering data, boundary control method.
Received: 29.08.2024
Citation:
M. I. Belishev, A. F. Vakulenko, “Three-dimensional inverse acoustic scattering problem by the BC-method”, Mathematical problems in the theory of wave propagation. Part 54, Zap. Nauchn. Sem. POMI, 533, POMI, St. Petersburg, 2024, 55–76
Linking options:
https://www.mathnet.ru/eng/znsl7466 https://www.mathnet.ru/eng/znsl/v533/p55
|
Statistics & downloads: |
Abstract page: | 21 | Full-text PDF : | 5 | References: | 2 |
|