Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 536, Pages 79–95 (Mi znsl7505)  

On the M. Kac problem with augmented data

M. I. Belishev, A. F. Vakulenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $\Omega$ be a bounded plane domain. As is known, the spectrum $0<\lambda_1<\lambda_2\leqslant\dots$ of its Dirichlet Laplacian $L=-\Delta\upharpoonright[H^2(\Omega)\cap H^1_0(\Omega)]$ does not determine $\Omega$ (up to isometry). By this, a reasonable version of the M. Kac problem is to augment the spectrum with relevant data that provide the determination.
To give the spectrum is to represent $L$ in the form $\tilde L=\Phi L\Phi^*={\rm diag }\{\lambda_1,\lambda_2,\dots\}$ in the space ${\mathbf l}_2$, where $\Phi\colon L_2(\Omega)\to{\mathbf l}_2$ is the Fourier transform. Let $\mathscr K=\{h\in L_2(\Omega) | \Delta h=0 {\rm\ into\ } \Omega\}$ be the harmonic function subspace, $\tilde{\mathscr K}=\Phi\mathscr K\subset{\mathbf l}_2$. We show that, in a generic case, the pair $\tilde L,\tilde{\mathscr K}$ determines $\Omega$ up to isometry, what holds not only for the plain domains (drums) but for the compact Riemannian manifolds of arbitrary dimension, metric, and topology. Thus, the subspace $\tilde{\mathscr K}\subset{\mathbf l}_2$ augments the spectrum, making the problem uniquely solvable.
Key words and phrases: M. Kac problem, augmented data, lattice theory, dynamical system with boundary control.
Received: 06.08.2024
Document Type: Article
UDC: 517
Language: Russian
Citation: M. I. Belishev, A. F. Vakulenko, “On the M. Kac problem with augmented data”, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Zap. Nauchn. Sem. POMI, 536, POMI, St. Petersburg, 2024, 79–95
Citation in format AMSBIB
\Bibitem{BelVak24}
\by M.~I.~Belishev, A.~F.~Vakulenko
\paper On the M. Kac problem with augmented data
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 536
\pages 79--95
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7505}
Linking options:
  • https://www.mathnet.ru/eng/znsl7505
  • https://www.mathnet.ru/eng/znsl/v536/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:27
    Full-text PDF :8
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025