Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 536, Pages 96–125 (Mi znsl7506)  

Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains

V. Bobkova, S. Kolonitskiib

a Institute of Mathematics, Ufa Federal Research Centre, RAS Chernyshevsky str. 112, 450008 Ufa, Russia
b St.Petersburg Electrotechnical University “LETI” St. Petersburg, Russia
References:
Abstract: Let $u$ be either a second eigenfunction of the fractional $p$-Laplacian or a least energy nodal solution of the equation $(-\Delta)^s_p u = f(u)$ with superhomogeneous and subcritical nonlinearity $f$, in a bounded open set $\Omega$ and under the nonlocal zero Dirichlet conditions. Assuming only that $\Omega$ is Steiner symmetric, we show that the supports of positive and negative parts of $u$ touch $\partial\Omega$. As a consequence, the nodal set of $u$ has the same property whenever $\Omega$ is connected. The proof is based on the analysis of equality cases in certain polarization inequalities involving positive and negative parts of $u$, and on alternative characterizations of second eigenfunctions and least energy nodal solutions.
Key words and phrases: fractional $p$-Laplacian, second eigenfunctions, least energy nodal solutions, Payne conjecture, nodal set, polarization.
Received: 08.08.2024
Document Type: Article
UDC: 517
Language: English
Citation: V. Bobkov, S. Kolonitskii, “Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains”, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Zap. Nauchn. Sem. POMI, 536, POMI, St. Petersburg, 2024, 96–125
Citation in format AMSBIB
\Bibitem{BobKol24}
\by V.~Bobkov, S.~Kolonitskii
\paper Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 536
\pages 96--125
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7506}
Linking options:
  • https://www.mathnet.ru/eng/znsl7506
  • https://www.mathnet.ru/eng/znsl/v536/p96
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :13
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025