Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 539, Pages 31–43 (Mi znsl7533)  

On controllability of the acoustic scattering dynamical system in $\Bbb R^3$

M. I. Belishev, A. F. Vakulenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: The acoustic scattering problem is to find $u=u^f(x,t)$ satisfying
\begin{align*} &u_{tt}-\Delta u+qu=0, (x,t) \in {\mathbb R}^3 \times (-\infty,0);\\ &u \mid_{|x|<-t} =0 , t<0\\ &\lim_{s \to \infty} s u((s+\tau) \omega,-s)=f(\tau,\omega), (\tau,\omega) \in \Sigma:=[0,\infty)\times S^2; \end{align*}
with a real valued compactly supported potential $q\in L_\infty(\Bbb R^3)$ and a control $f \in \mathscr F:=L_2(\Sigma)$. Let $\mathscr F^\xi:= \{f\in\mathscr F | f\big|_{0\leqslant \tau\leqslant \xi}=0\}$, $\mathscr H:=L_2(\Bbb R^3)$, $\mathscr H^\xi:=\{y\in \mathscr H | y\big|_{|x|<\xi}=0\}$, $\xi>0$. For the (delayed) controls $f\in\mathscr F^\xi$, the reachable set is $\mathscr U^\xi:=\{u^f(\cdot, 0) | f\in\mathscr F^\xi\}\subset\mathscr H^\xi$, whereas $\mathscr D^\xi:=\mathscr H^\xi\ominus\mathscr U^\xi$ is the defect (unreachable) subspace. The paper provides a characterization of $\mathscr D^\xi$ as follows.
We say an $a\in\mathscr H^\xi$ to be a $q$-polyharmonic function of the order $n$ if $(-\Delta +q)^n a=0$ holds for $|x|>\xi$, and write $a\in\mathscr A^\xi_n$. Our main result is the relation
\begin{equation*} {\mathscr D}^\xi =\overline{{\rm span }\{\mathscr A^\xi_n | n\geqslant 1\}}, \xi>0 \end{equation*}
(the closure in $\mathscr H$). It basically concludes the study of controllability of the acoustical dynamical system governed by the locally perturbed wave equation in $\mathbb R^3$.
Key words and phrases: dynamical system governed by locally perturbed wave equation, scattering problem, controllability.
Received: 13.08.2024
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. I. Belishev, A. F. Vakulenko, “On controllability of the acoustic scattering dynamical system in $\Bbb R^3$”, Investigations on applied mathematics and informatics. Part III, Zap. Nauchn. Sem. POMI, 539, POMI, St. Petersburg, 2024, 31–43
Citation in format AMSBIB
\Bibitem{BelVak24}
\by M.~I.~Belishev, A.~F.~Vakulenko
\paper On controllability of the acoustic scattering dynamical system in $\Bbb R^3$
\inbook Investigations on applied mathematics and informatics. Part~III
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 539
\pages 31--43
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7533}
Linking options:
  • https://www.mathnet.ru/eng/znsl7533
  • https://www.mathnet.ru/eng/znsl/v539/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:17
    Full-text PDF :5
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025