Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 310, Pages 114–144 (Mi znsl809)  

This article is cited in 2 scientific papers (total in 2 papers)

About homogenization of elasticity problems on combined structures

S. E. Pastukhova

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Full-text PDF (297 kB) Citations (2)
References:
Abstract: We study elasticity problems in the plane (space) reinforced with periodic thin network (box structure). This highly contrasting medium depends on two small related parameters $\varepsilon$ and $h$ connected with each other which controlling size of periodicity cell and thickness of reinforcement. For combined structures we prove classical homogenization principle the same for any interrelation between parameters $\varepsilon$ and $h$ that is quite contrary to the case of thin structures. We use method of 2-scale convergence with respect to variable measure natural to combined structures.
Received: 23.09.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 132, Issue 3, Pages 313–330
DOI: https://doi.org/10.1007/s10958-005-0500-9
Bibliographic databases:
UDC: 517
Language: Russian
Citation: S. E. Pastukhova, “About homogenization of elasticity problems on combined structures”, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Zap. Nauchn. Sem. POMI, 310, POMI, St. Petersburg, 2004, 114–144; J. Math. Sci. (N. Y.), 132:3 (2006), 313–330
Citation in format AMSBIB
\Bibitem{Pas04}
\by S.~E.~Pastukhova
\paper About homogenization of elasticity problems on combined structures
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 310
\pages 114--144
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl809}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120188}
\zmath{https://zbmath.org/?q=an:1085.35027}
\elib{https://elibrary.ru/item.asp?id=9128690}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 132
\issue 3
\pages 313--330
\crossref{https://doi.org/10.1007/s10958-005-0500-9}
\elib{https://elibrary.ru/item.asp?id=13520982}
Linking options:
  • https://www.mathnet.ru/eng/znsl809
  • https://www.mathnet.ru/eng/znsl/v310/p114
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :102
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024