Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 310, Pages 213–225 (Mi znsl813)  

This article is cited in 3 scientific papers (total in 3 papers)

When does the free boundary enter into corner points of the fixed boundary?

H. Shahgholian

Royal Institute of Technology, Department of Mathematics
Full-text PDF (187 kB) Citations (3)
References:
Abstract: Our prime goal in this note is to lay the ground for studying free boundaries close to the corner points of a fixed, Lipschitz boundary. Our study is restricted to 2-space dimensions, and to the obstacle problem. Our main result states that the free boundary can not enter into a corner $x^0$ of the fixed boundary, if the (interior) angle is less than $\pi$, provided the boundary datum is zero close to the point $x^0$. For larger angles and other boundary datum the free boundary may enter into corners, as discussed in the text.
Received: 26.05.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 132, Issue 3, Pages 371–377
DOI: https://doi.org/10.1007/s10958-005-0504-5
Bibliographic databases:
UDC: 517
Language: English
Citation: H. Shahgholian, “When does the free boundary enter into corner points of the fixed boundary?”, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Zap. Nauchn. Sem. POMI, 310, POMI, St. Petersburg, 2004, 213–225; J. Math. Sci. (N. Y.), 132:3 (2006), 371–377
Citation in format AMSBIB
\Bibitem{Sha04}
\by H.~Shahgholian
\paper When does the free boundary enter into corner points of the fixed boundary?
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 310
\pages 213--225
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl813}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120191}
\zmath{https://zbmath.org/?q=an:1082.35171}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 132
\issue 3
\pages 371--377
\crossref{https://doi.org/10.1007/s10958-005-0504-5}
Linking options:
  • https://www.mathnet.ru/eng/znsl813
  • https://www.mathnet.ru/eng/znsl/v310/p213
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :68
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024