Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 306, Pages 199–209 (Mi znsl856)  

This article is cited in 24 scientific papers (total in 24 papers)

Non-uniqueness of the solution to the problem of a motion of a rigid body in a viscous incompressible fluid

V. N. Starovoitov

M. A. Lavrent'ev Institute of Hydrodynamics
References:
Abstract: This paper is devoted to the investigation of the problem on a motion of a rigid body in a viscous incompressible fluid. It is proved that there exist at least two weak solutions of this problem, if the collisions of the body with the boundary of the flow domain are allowed. These solutions have different behavior of the body after the collision. Namely, for the first solution, the body goes away from the boundary after the collision. In the second solution, the body and the boundary remain in contact.
Received: 20.10.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 130, Issue 4, Pages 4893–4898
DOI: https://doi.org/10.1007/s10958-005-0384-8
Bibliographic databases:
UDC: 517
Language: Russian
Citation: V. N. Starovoitov, “Non-uniqueness of the solution to the problem of a motion of a rigid body in a viscous incompressible fluid”, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Zap. Nauchn. Sem. POMI, 306, POMI, St. Petersburg, 2003, 199–209; J. Math. Sci. (N. Y.), 130:4 (2005), 4893–4898
Citation in format AMSBIB
\Bibitem{Sta03}
\by V.~N.~Starovoitov
\paper Non-uniqueness of the solution to the problem of a~motion of a~rigid body in a~viscous incompressible fluid
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 306
\pages 199--209
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl856}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2065504}
\zmath{https://zbmath.org/?q=an:1148.35347}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 130
\issue 4
\pages 4893--4898
\crossref{https://doi.org/10.1007/s10958-005-0384-8}
Linking options:
  • https://www.mathnet.ru/eng/znsl856
  • https://www.mathnet.ru/eng/znsl/v306/p199
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :88
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024