Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 4, Pages 587–604
DOI: https://doi.org/10.7868/S0044466916040165
(Mi zvmmf10378)
 

This article is cited in 5 scientific papers (total in 5 papers)

Alternating triangular schemes for convection-diffusion problems

P. N. Vabishchevichab, P. E. Zakharovbc

a Nuclear Safety Institute, RAS, Moscow
b North-Eastern Federal University named after M. K. Ammosov
c Germany, D-67663 Kaiserslautern, Fraunhofer-Platz, 1, Fraunhofer Institute for Industrial Mathematics
References:
Abstract: Explicit-implicit approximations are used to approximate nonstationary convection-diffusion equations in time. In unconditionally stable two-level schemes, diffusion is taken from the upper time level, while convection, from the lower layer. In the case of three time levels, the resulting explicit-implicit schemes are second-order accurate in time. Explicit alternating triangular (asymmetric) schemes are used for parabolic problems with a self-adjoint elliptic operator. These schemes are unconditionally stable, but conditionally convergent. Three-level modifications of alternating triangular schemes with better approximating properties were proposed earlier. In this work, two- and three-level alternating triangular schemes for solving boundary value problems for nonstationary convection-diffusion equations are constructed. Numerical results are presented for a two-dimensional test problem on triangular meshes, such as Delaunay triangulations and Voronoi diagrams.
Key words: convection-diffusion equation, finite difference schemes, Delaunay triangulation, Voronoi diagram, explicit-implicit schemes, alternating triangular method.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00785_а
This work was supported by the Russian Foundation for Basic Research, project no. 14-01-00785.
Received: 05.05.2015
Revised: 03.08.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 4, Pages 576–592
DOI: https://doi.org/10.1134/S096554251604014X
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: P. N. Vabishchevich, P. E. Zakharov, “Alternating triangular schemes for convection-diffusion problems”, Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016), 587–604; Comput. Math. Math. Phys., 56:4 (2016), 576–592
Citation in format AMSBIB
\Bibitem{VabZak16}
\by P.~N.~Vabishchevich, P.~E.~Zakharov
\paper Alternating triangular schemes for convection-diffusion problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 4
\pages 587--604
\mathnet{http://mi.mathnet.ru/zvmmf10378}
\crossref{https://doi.org/10.7868/S0044466916040165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3540560}
\elib{https://elibrary.ru/item.asp?id=25772315}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 4
\pages 576--592
\crossref{https://doi.org/10.1134/S096554251604014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376415600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971222534}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10378
  • https://www.mathnet.ru/eng/zvmmf/v56/i4/p587
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:420
    Full-text PDF :103
    References:84
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025