Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 4, Pages 555–587
DOI: https://doi.org/10.7868/S0044466917040044
(Mi zvmmf10555)
 

This article is cited in 14 scientific papers (total in 14 papers)

Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case

S. I. Bezrodnykhabc

a Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
b Sternberg Astronomical Institute, Moscow State University, Moscow, Russia
c RUDN University, Moscow, Russia
References:
Abstract: The Appell function $F_1$ (i.e., a generalized hypergeometric function of two complex variables) and a corresponding system of partial differential equations are considered in the logarithmic case when the parameters of $F_1$ are related in a special way. Formulas for the analytic continuation of $F_1$ beyond the unit bicircle are constructed in which $F_1$ is determined by a double hypergeometric series. For the indicated system of equations, a collection of canonical solutions are presented that are two-dimensional analogues of Kummer solutions well known in the theory of the classical Gauss hypergeometric equation. In the logarithmic case, the canonical solutions are written as generalized hypergeometric series of new form. The continuation formulas are derived using representations of $F_1$ in the form of Barnes contour integrals. The resulting formulas make it possible to efficiently calculate the Appell function in the entire range of its variables. The results of this work find a number of applications, including the problem of parameters of the Schwarz–Christoffel integral.
Key words: hypergeometric functions two variables, system of partial differential equations, Barnes-type integrals, analytic continuation.
Received: 06.07.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 4, Pages 559–589
DOI: https://doi.org/10.1134/S0965542517040042
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: S. I. Bezrodnykh, “Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case”, Zh. Vychisl. Mat. Mat. Fiz., 57:4 (2017), 555–587; Comput. Math. Math. Phys., 57:4 (2017), 559–589
Citation in format AMSBIB
\Bibitem{Bez17}
\by S.~I.~Bezrodnykh
\paper Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 4
\pages 555--587
\mathnet{http://mi.mathnet.ru/zvmmf10555}
\crossref{https://doi.org/10.7868/S0044466917040044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3651114}
\elib{https://elibrary.ru/item.asp?id=29331717}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 4
\pages 559--589
\crossref{https://doi.org/10.1134/S0965542517040042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401560700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019650040}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10555
  • https://www.mathnet.ru/eng/zvmmf/v57/i4/p555
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:800
    Full-text PDF :123
    References:107
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025