Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 9, Pages 1516–1531
DOI: https://doi.org/10.1134/S0044466919090102
(Mi zvmmf10950)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotics of the solution of a differential equation in a saddle–node bifurcation

L. A. Kalyakin

Institute of Mathematics with Computing Center, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450008 Russia
Citations (3)
References:
Abstract: A second-order semilinear differential equation with slowly varying parameters is considered. With frozen parameters, the corresponding autonomous equation has fixed points: a saddle point and stable nodes. Upon deformation of the parameters, the saddle–node pair merges. An asymptotic solution near such a dynamic bifurcation is constructed. It is found that, in a narrow transition layer, the principal terms of the asymptotics are described by the Riccati and Kolmogorov–Petrovsky–Piskunov equations. An important result is finding the dragging out of the stability: the moment of disruption significantly shifts from the moment of bifurcation. The exact assertions are illustrated by the results of numerical experiments.
Key words: nonlinear equation, small parameter, asymptotics, equilibrium, dynamic bifurcation.
Received: 25.12.2018
Revised: 29.04.2019
Accepted: 15.05.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 9, Pages 1454–1469
DOI: https://doi.org/10.1134/S0965542519090100
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: L. A. Kalyakin, “Asymptotics of the solution of a differential equation in a saddle–node bifurcation”, Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019), 1516–1531; Comput. Math. Math. Phys., 59:9 (2019), 1454–1469
Citation in format AMSBIB
\Bibitem{Kal19}
\by L.~A.~Kalyakin
\paper Asymptotics of the solution of a differential equation in a saddle--node bifurcation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 9
\pages 1516--1531
\mathnet{http://mi.mathnet.ru/zvmmf10950}
\crossref{https://doi.org/10.1134/S0044466919090102}
\elib{https://elibrary.ru/item.asp?id=39180329}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 9
\pages 1454--1469
\crossref{https://doi.org/10.1134/S0965542519090100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000490284200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073495543}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10950
  • https://www.mathnet.ru/eng/zvmmf/v59/i9/p1516
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:194
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025